
Exploiting directory
permissions on macOS

Csaba Fitzl
Twitter: @theevilbit

whoami

• content developer at Offensive Security

• ex red/blue teamer

• recent macOS research

• husband, father

• hiking

• yoga

agenda

• macOS filesystem permissions

• finding bugs

• bugs

• preventing attacks

macOS filesystem
permissions

POSIX model
• every file and directory

• owner (user) permissions

• group permissions

• everyone (world) permissions

• each of them
• read

• write

• execute

POSIX model

• files
• r/w/x permissions are straightforward

• directories
• read - you can enumerate the directory entries

• write - you can delete/write files to the directory

• execute - you are allowed to traverse the directory - if you don't have this
right, you can't access any files inside it, or in any subdirectories.

POSIX model - scenarios

• directory: r - - (only read)
• can’t access any files (no execute permissions)

• directory: - - x (only execute)
• can’t list files (no read permissions)

• can access files if name is known

experiment

POSIX model - scenarios

• in case you don’t have `x` permissions on a directory but have
permissions on the file -> maybe find a way to leak

• have `rwx` on a directory - can delete / create files regardless of file’s
permissions
• e.g.: file is owned by root -> you can still delete it (!!!)

flag modifiers

• there are many flag modifiers

• from exploitation point of view, the important ones:
• uchg, uchange, uimmutable (same, different names) - no one can change the

file until the flag is removed

• restricted - protected by SIP (= not even root can modify it, special
entitlement is needed)

experiment

sticky bit

> When a directory's sticky bit is set, the filesystem treats the files in such
directories in a special way so only the file's owner, the directory's owner, or
root user can rename or delete the file*

>Typically this is set on the /tmp directory to prevent ordinary users from
deleting or moving other users' files*

* Wikipedia

Access Control Lists

• more granular then the POSIX model

• Access Control Entries

• can be applied for multiple users, groups

• directory rights: list, search, add_file, add_subdirectory, delete_child

• file rights: read, write, append, execute

sandbox

• SIP is also enforced by the sandbox

• can further restrict file access - typically through sandbox profiles

• profiles are in:
• `/usr/share/sandbox/`

• `/System/Library/Sandbox/Profiles/

sandbox example (mds)

finding bugs

static method
• file owner is root, but the directory owner is different

• file owner is not root, but directory owner is root

• file owner is root, and one of the user's group has write access to the
directory

• file owner is not root, but the group is wheel, and the parent folder also
not root owned

• python script is available the blog post

dynamic method

• monitor for similar relationships

• tools: fs_usage, Objective-See's FileMonitor

• benefit: find cases where root process changes file owner in a
controllable location

BUGs

general idea

• goal: redirect file operation to a location we want

• process: delete file, place a symlink or hardlink, wait and see

problems
1. the process might run as root, however because of sandboxing it might

not be able to write to any interesting location

2. the process might not follow symlinks / hardlinks, but instead it will
overwrite our link, and create a new file

3. if we can successfully redirect the file operation, the file will still be
owned by root, and we can't modify it after. We need to find a way to
affect the file contents for our benefits.

• 1 || 2 = no bug

controlling content

• need to find a way to inject data into files owned by root

• or if given file is controlling access, we can just make a new file

InstallHistory.plist file - Arbitrary file
overwrite vulnerability

(CVE-2020-3830)

InstallHistory.plist file - Arbitrary file overwrite
vulnerability (CVE-2020-3830)

• whenever someone installs an app on macOS, the system will log it to a
file called `InstallHistory.plist`, which is located at `/Library/Receipts`

• admins have write access to this location ==> delete file ==> place
symlink ==> overwrite arbitrary files

InstallHistory.plist file - Arbitrary file overwrite
vulnerability (CVE-2020-3830)

• can't really control contents -
only limited, the metadata of
the application

• trigger: install something

Adobe Reader macOS installer -
arbitrary file overwrite vulnerability

(CVE-2020-3763)

Adobe Reader macOS installer - arbitrary file overwrite
vulnerability (CVE-2020-3763)

• at the end of installing Adobe Acrobat Reader for macOS a file is placed
in the `/tmp/` directory, named `com.adobe.reader.pdfviewer.tmp.plist`

• prior the installation we can create a symlink, which will be followed

• content is fixed ==> only arbitrary overwrite

Grant group write access to plist files
via DiagnosticMessagesHistory.plist

(CVE-2020-3835)

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

• someone can add `rw-rw-r` permissions to any `plist` file by abusing the
file `DiagnosticMessagesHistory.plist` in the `/Library/Application
Support/CrashReporter/` directory

• the directory `/Library/Application Support/CrashReporter/` allows write
access to users in the admin group.

• the permissions for the file:
• -rw-rw-r-- 1 root admin 258 Oct 12 20:28
DiagnosticMessagesHistory.plist

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

• we can create a symlink as normal

• no file overwrite will happen

• but! if the target is a PLIST file, permissions will set to -rw-rw-r--
• we can grant world read access to any PLIST file

• we can grant group write access to any PLIST file

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

• trigger: Analytics &
Improvements settings

• find interesting files

macOS fontmover - file disclosure
vulnerability (CVE-2019-8837)

macOS fontmover - file disclosure vulnerability
(CVE-2019-8837)

• `/Library/Fonts` has group write permissions set

• as admin users are in the `admin` group, someone can drop here any file

• this is the folder containing the system wide fonts, and I think this
privilege unnecessary and I will come back to this why

exploitation
• download a font, and double click

exploitation
• set the install location to `Computer`

• user location (default): `~/Library/Fonts`

• computer location: `/Library/Fonts`

exploitation
• press `Install Font`

• press `Install Ticked`

• authentication prompt to root

• file is being copied

exploitation

• symlinks or hardlinks don't work
• will be removed

• can't win race condition

• even if worked, fontmover is sandboxed

exploitation
• the file disclosure vulnerability happens with regards of the source file

• between the steps `Install Font` and `Install Ticked` the file is not locked
by the application

• replace original file with symlink

• what do we gain?
• root process moves a file with its original permissions to a place where we

already have write access

• not interesting at first sight, but remember POSIX permissions!

exploitation

• remember: in case you don’t have `x` permissions on a directory but have
permissions on the file -> maybe find a way to leak

• example:
-rw-r--r-- 1 root wheel 1043 Aug 30 16:10 /private/var/run/
mds/uuid-tokenID.plist

exploitation

fix

• file replacement will be verified, link is not followed

macOS DiagnosticMessages arbitrary
file overwrite vulnerability

(CVE-2020-3855)

macOS DiagnosticMessages arbitrary file overwrite
vulnerability (CVE-2020-3855)

• usual story

• `/private/var/log/DiagnosticMessages` is writeable for the `admin` group

• bunch of *.asl log files owned by root

• exploit via hardlinks (might need to reboot)

content

• this is a log file - can we control content? - partially

• ASL logs - old API, few documentation
• multiple destination file, how do I end up in `/private/var/log/

DiagnosticMessages`?

• Most logs looked like, pre-defined fields

• Hope: found custom text from CalendarAgent
• from: /System/Library/PrivateFrameworks/CalendarPersistence.framework/

Versions/Current/CalendarPersistence

content

content
• CalMessageTracer leads to `/System/Library/PrivateFrameworks//

CalendarFoundation.framework/Versions/Current/CalendarFoundation`

content
• CalMessageTracer

• we see the ASL API

content

• custom messages lead to further
functions

• I stopped

• we can use this function to create a log
entry for us

content

• we need to create a header file

• load the private framework

• call the function

• we can insert custom string

content

• not enough for code execution :(

• but can be useful trick :)

Adobe Reader macOS installer - local
privilege escalation (CVE-2020-3762)

Adobe Reader macOS installer - LPE (CVE-2020-3762)

• installer's `Acrobat Update Helper.app` component

• `com.adobe.AcrobatRefreshManager` dir is created in /tmp/ during
install

• 2 PLIST files that will be copied into `/Library/LaunchDaemons/`

• fixed location

• installer deletes existing `com.adobe.AcrobatRefreshManager`

Adobe Reader macOS installer - LPE (CVE-2020-3762)

• `/tmp/com.adobe.AcrobatRefreshManager/Adobe Acrobat Updater.app/
Contents/Library/LaunchServices` - where the plist files are stored

• race condition - we recreate the dir structure after deletion, before
creation

• installers places the original PLIST

• we delete (we own the dir), and put our own

• installer puts our PLIST into LaunchDameons

macOS periodic scripts - 320.whatis
script privilege escalation to root

(CVE-2019-8802)

macOS periodic scripts - 320.whatis script LPE
(CVE-2019-8802)

• macOS's periodic maintenance scripts

• weekly: /etc/periodic/weekly/320.whatis
• rebuilds the man database

• runs as root

• will get the man paths

• /usr/local/share/man

• owned by the user, typically via brew install

makewhatis
• makewhatis

• creates `whatis.tmp`

• we can redirect it via symlink

• target: LaunchDaemons

• PLIST file has to be proper XML

whatis database

• database format:
• 1st column: derived from the filename

• 2nd column: the name from the NAME section of the man file

• How do we get a proper XML?

exploit
• STEP 1

• we put our PLIST file into the NAME section

• need to end it with `<!--` to comment out any following text

exploit

• STEP 2
• our man page has to be the first

• if any other starts with a number (e.g.: 7zip) -> rename

exploit

• STEP 3
• the filename has to make sense in XML

• be it: <!--7z.1 This is a valid filename!!!

exploit

• STEP 4
• need to close the XML comment that comes from the filename

• The new NAME section:

exploit

• STEP 5
• create symlink, run weekly scripts (or wait a week ;))

• the file we got: filename

NAME
section

demo - makewhatis exploit

Avoiding the attack

Installers

• Use random directory name in /tmp/

• if not random:
• create the directory, set permissions: owned by root, no one else has rights

• cleanup the directory

• can start using it

move operation
• move (mv) operation doesn't

follow symlinks/hardlinks for
files

• both will be overwritten

Objective-C
• `writeToFile` doesn't follow links, overwrites them

?

Icons
• Icons made by Darius Dan

• Icons made by Eucalyp

• Icons made by phatplus

• Icons made by Freepik

• Icons made by Flat Icons

• Icons made by Kiranshastry

• https://www.flaticon.com/

