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Who are we?

- PhD students @VUSec

- Extensive experience with RowHammer

Emanuele Vannacci (@vanema94) 
Pietro Frigo (@pit_frg)



What’s it about?

RowHammer

How we broke them

Defenses vol. 1&2

in-DRAM DDR4 mitigations
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r1 = *(volatile char*) a1;

r1: *a1

MemCtl
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Exploiting RowHammer
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Memory integrity is dead
How do we get it back?



Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation



MemCtl

Core

clflush() …no more

for (r in N):
*(volatile char*) row1
*(volatile char*) row3
clflush(row1)
clflush(row3)Cache
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Tracing via PMU
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Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation
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Memory separation
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Limitations

• Bit flips can occur on rows further away

• Unknown memory geometry
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Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation
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ECC

• ECC DIMMs used in server systems

• SECDED

• single error correction and double-bit error detection 

• 3 bit flips: potentially undetectable and uncorrectable (ECCploit)

L. Cojocar et al, “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in IEEE S&P, 2019
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PARA

• Probabilistic Adjacent Row Activation

• The MC activates the adjacent rows with a probability p (<< 1) after a row is closed

• Stateless 

• No significant overhead

• Memory geometry is unknown 

Y. Kim et al, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014
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Pseudo Target Row Refresh

• From “Thoughts on Intel® Xeon® E5-2600 v2 Product Family Performance Optimisation” 

Key idea:

• The MC monitors rows activations and performs targeted refreshes on the victim rows



Compliant DIMMs? 

• The Serial Presence Detect (SPD)  contains the Maximum Activation Count (MAC)

• Untested

• Unlimited

• A discrete value (e.g. 300K) 

Pseudo Target Row Refresh
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In-DRAM mitigations
The DDR4 landscape



Timeline

'12 '14 '15'13 '16 '18'17 '19

pTRR DDR3
Intel reports pTRR on 
DDR3 server systems

pTRR DDR4
First DDR4 generation is 

pTRR protected

In-DRAM TRR
Earliest manufacturing date 
of RH-free DRAM modules

DIMMs we focused on



Target Row Refresh (TRR)

• TRR-like mitigations track rows activations and prevent errors

• Errors prevention by targeted refresh commands

• No Memory Controller support

• Embedded in the DRAM circuitry 



Target Row Refresh (TRR)

• Removed from JEDEC DDR4 standard

• Memory vendors advertise RowHammer-free memory modules

• Many possible implementations!

• Security by obscurity

• No real evaluation



Abstractions

• Sampler

• Row activations monitoring

• It specifies which rows must be refreshed

• Inhibitor

• Refresh 

• Remapping
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Reverse Engineering



Challenges

• Analysis from the CPU side not feasible
• The MC provides a very high interface

• No side channels!

• We would need a FPGA-based MC… 

H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017



Reverse Engineering

• What? The sampler size!

• How?

• Issuing specific commands sequences by SoftMC to the DIMM

• Targeting more then 2 aggressor rows!

• The Many-sided RowHammer

• Why?  To lead the sampler to discard a few rows



Methodology

• Pick N aggressor rows

• Perform a series of hammers (activations of aggressors)

• 8K activations 

• After each series of hammers, issue R refreshes

• 10 Rounds

Activations Refreshes Activations Refreshes

Round
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Case study

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval 

• The mitigation can refresh only a single victim within a refresh operation 

• Sweeping the number of refresh operations and aggressor rows reveals the sampler size

• The sampling mechanism is affected by the addresses of aggressor rows

72



Findings

• The DDR4 substrate is much more vulnerable!

• Bit flips with less then 50K activations per aggressor

• The sampler can be overfilled

• Victims rows may not be properly refreshed by the Inhibitor

• Sampler properties

• Timing-based

• Frequency-based
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ONE PROBLEM SOLVED…

ONE MILLION PROBLEMS LEFT



TRRespass



TRRespass: The RowFuzzer

• The first row fuzzer

• Black Box fuzzing

• Scalable approach for testing

• Randomizing hammering pattern

• # Aggressors

• Aggressor location
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BIT FLIPS…

BIT FLIPS EVERYWHERE



TRRespass: The RowFuzzer

• TRR not secure at 100%

• Discretely effective against state-of-the-art hammering patterns

• Vulnerable to novel patterns

What if combined with other kind of defenses?

• Double refresh rate: still flippy!

• ECC: Not tested

• Many-sided RH usually causes multiple flips
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Recap

• Software mitigations

• High overhead

• Lack of memory geometry information

• Hardware mitigations

• Hardly deployable

• Fragmented  solutions 

• Missing a standard
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Conclusions

• DDR4 device even more vulnerable than previous versions

• All major vendors are affected:

• 90% of the market

• Fuzzing techniques are helpful 

• After almost 10 years RowHammer is still a problem

• No prompt mitigation available
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