
A journey into the secret flaws of 
in-DRAM RowHammer mitigations

Emanuele Vannacci
Pietro Frigo
Vrije Universiteit Amsterdam



Who are we?

- PhD students @VUSec

- Extensive experience with RowHammer

Emanuele Vannacci (@vanema94) 
Pietro Frigo (@pit_frg)



What’s it about?

RowHammer

How we broke them

Defenses vol. 1&2

in-DRAM DDR4 mitigations



DRAM

DIMM

C
h

ip
0

C
h

ip
1

C
h

ip
N

…



DRAM - Bank

Row buffer

cell

R
o

w
 D

ec
o

d
er

ad
d

r

0 1 1 0



CPU

DRAM

r1 = *(volatile char*) a1;

r1: *a1

MemCtl

{bk: 0, row: 1}

{bk: 0, row: 1}



DRAM - Bank

Row buffer

R
o

w
 D

ec
o

d
er

ad
d

r

0 1 1 0



DRAM - Bank
ro

w
 1

0 1 1 0
R

o
w

 D
ec

o
d

er

0 1 1 0

- Activate



DRAM - Bank
ro

w
 1 R
o

w
 D

ec
o

d
er

0 1 1 0

- Activate
- Precharge

0 1 1 0



DRAM - Bank

0 1 1 0
R

o
w

 D
ec

o
d

er

0 1 1 0

- Activate
- Precharge
- Refresh



DRAM - Bank

R
o

w
 D

ec
o

d
er - Activate

- Precharge
- Refresh

0 1 1 0

Refresh every row every 64ms
Refresh some rows every 7.8μs (64ms/8192) tREFi



Rowhammer



Rowhammer

0 0 0 0

0 1 1 0

0 0 0 0

Row buffer

ad
d

r

R
o

w
 D

ec
o

d
er

110
REPEATABLE!



Exploiting RowHammer

‘14 ‘15 ‘16 ’17 ’18

EL1

EL2

EL0APP

OS

APP APP

OS

APP

Hypervisor





Memory integrity is dead
How do we get it back?



Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation



MemCtl

Core

clflush() …no more

for (r in N):
*(volatile char*) row1
*(volatile char*) row3
clflush(row1)
clflush(row3)Cache



MemCtl

Core

clflush() …no more

for (r in N):
*(volatile char*) row1
*(volatile char*) row3
clflush(row1)
clflush(row3)Cache

Cache eviction!



MemCtl

Core

clflush() …no more

for (r in N):
*(volatile char*) row1
*(volatile char*) row3
clflush(row1)
clflush(row3)Cache

Cache eviction!



Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation



Tracing via PMU

MemCtl

Core

Cache



Tracing via PMU



Tracing via PMU

MemCtl

Core

Cache

Refresh rows 
being targeted



Tracing via PMU

Tracing is $$$

Tailor to specific 
patterns

Tradeoff 
performance/security

Easy to fool 



Tracing via PMU

Tracing is $$$

Tailor to specific 
patterns

Tradeoff 
performance/security

Easy to fool 





Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation



Memory separation

EL1

EL2

EL0
APP

OS

APP APP

OS

APP

Hypervisor



Memory separation

Row buffer

R
o

w
 D

ec
o

d
er

ad
d

r

EL1

EL2

EL0
APP

OS

APP APP

OS

APP

Hypervisor
Guard Row

EL0

EL1

APP APP

OS



Row buffer

R
o

w
 D

ec
o

d
er

ad
d

r

Guard Row

Guard Row

Guard Row

Safe region

Unsafe region

P
hy

si
ca

l a
d

d
re

ss
 s

p
ac

e

Memory separation



Limitations

• Bit flips can occur on rows further away

• Unknown memory geometry



Unknown geometry

Row buffer

R
o

w
 D

ec
o

d
er

Row buffer

R
o

w
 D

ec
o

d
er



Unknown geometry

Row buffer

R
o

w
 D

ec
o

d
er

Row buffer

R
o

w
 D

ec
o

d
er



Software Defenses

• Disabling flushing instructions

• Tracing via PMU

• Physical memory separation



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



ECC

• ECC DIMMs used in server systems

• SECDED

• single error correction and double-bit error detection 

• 3 bit flips: potentially undetectable and uncorrectable (ECCploit)

L. Cojocar et al, “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in IEEE S&P, 2019



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



Double refresh rate



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



PARA

• Probabilistic Adjacent Row Activation

• The MC activates the adjacent rows with a probability p (<< 1) after a row is closed

• Stateless 

• No significant overhead

• Memory geometry is unknown 

Y. Kim et al, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



Pseudo Target Row Refresh

• From “Thoughts on Intel® Xeon® E5-2600 v2 Product Family Performance Optimisation” 

Key idea:

• The MC monitors rows activations and performs targeted refreshes on the victim rows



Compliant DIMMs? 

• The Serial Presence Detect (SPD)  contains the Maximum Activation Count (MAC)

• Untested

• Unlimited

• A discrete value (e.g. 300K) 

Pseudo Target Row Refresh



Defenses vol. 2

• Error-correcting codes (ECC)

• Refresh based mitigations

• Double refresh rate

• PARA

• pTRR

• TRR



In-DRAM mitigations
The DDR4 landscape



Timeline

'12 '14 '15'13 '16 '18'17 '19

pTRR DDR3
Intel reports pTRR on 
DDR3 server systems

pTRR DDR4
First DDR4 generation is 

pTRR protected

In-DRAM TRR
Earliest manufacturing date 
of RH-free DRAM modules

DIMMs we focused on



Target Row Refresh (TRR)

• TRR-like mitigations track rows activations and prevent errors

• Errors prevention by targeted refresh commands

• No Memory Controller support

• Embedded in the DRAM circuitry 



Target Row Refresh (TRR)

• Removed from JEDEC DDR4 standard

• Memory vendors advertise RowHammer-free memory modules

• Many possible implementations!

• Security by obscurity

• No real evaluation



Abstractions

• Sampler

• Row activations monitoring

• It specifies which rows must be refreshed

• Inhibitor

• Refresh 

• Remapping



61

r5

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 5 Row 5



62

r5 r7

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 7 Row 7



63

r5

r0

r7

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 0 Row 0



64

r5

r0 r1

r7

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 1 Row 1



65

r2

r0 r1

r7

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 2 Row 2



66

r2

r0 r1

r3

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 3 Row 3



67

r2

r0 r1

r3

TRR controller

Inhibitor

Sampler

R
o

w
 D

ec
o

d
er

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

R1

REF R1



Reverse Engineering



Challenges

• Analysis from the CPU side not feasible
• The MC provides a very high interface

• No side channels!

• We would need a FPGA-based MC… 

H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017



Reverse Engineering

• What? The sampler size!

• How?

• Issuing specific commands sequences by SoftMC to the DIMM

• Targeting more then 2 aggressor rows!

• The Many-sided RowHammer

• Why?  To lead the sampler to discard a few rows



Methodology

• Pick N aggressor rows

• Perform a series of hammers (activations of aggressors)

• 8K activations 

• After each series of hammers, issue R refreshes

• 10 Rounds

Activations Refreshes Activations Refreshes

Round

71



Case study

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval 

• The mitigation can refresh only a single victim within a refresh operation 

• Sweeping the number of refresh operations and aggressor rows reveals the sampler size

• The sampling mechanism is affected by the addresses of aggressor rows

72



Findings

• The DDR4 substrate is much more vulnerable!

• Bit flips with less then 50K activations per aggressor

• The sampler can be overfilled

• Victims rows may not be properly refreshed by the Inhibitor

• Sampler properties

• Timing-based

• Frequency-based

73



74

ONE PROBLEM SOLVED…

ONE MILLION PROBLEMS LEFT



TRRespass



TRRespass: The RowFuzzer

• The first row fuzzer

• Black Box fuzzing

• Scalable approach for testing

• Randomizing hammering pattern

• # Aggressors

• Aggressor location

76



77

BIT FLIPS…

BIT FLIPS EVERYWHERE



TRRespass: The RowFuzzer

• TRR not secure at 100%

• Discretely effective against state-of-the-art hammering patterns

• Vulnerable to novel patterns

What if combined with other kind of defenses?

• Double refresh rate: still flippy!

• ECC: Not tested

• Many-sided RH usually causes multiple flips

78



Recap

• Software mitigations

• High overhead

• Lack of memory geometry information

• Hardware mitigations

• Hardly deployable

• Fragmented  solutions 

• Missing a standard

79



Conclusions

• DDR4 device even more vulnerable than previous versions

• All major vendors are affected:

• 90% of the market

• Fuzzing techniques are helpful 

• After almost 10 years RowHammer is still a problem

• No prompt mitigation available

80



Pietro Frigo p.frigo@vu.nl, Emanuele Vannacci e.vannacci@vu.nl


