A journey into the secret flaws of in-DRAM RowHammer mitigations

Emanuele Vannacci Pietro Frigo Vrije Universiteit Amsterdam

Who are we?

Emanuele Vannacci (@vanema94) Pietro Frigo (@pit_frg)

- PhD students @VUSec
- Extensive experience with RowHammer

What's it about?

RowHammer

Defenses vol. 1&2

in-DRAM DDR4 mitigations

How we broke them

- Activate
- Precharge
- Refresh

- Activate
- Precharge
- Refresh

-Refresh every row every 64ms Refresh some rows every 7.8µs (64ms/8192)

Rowhammer

Rowhammer

REPEATABLE!

Exploiting RowHammer

SOCIAL CONSTRUCT CUNDARIES ARE A PRIVILEGE BOUNDARIES ARE A SOCIAL CONSTRUCT PRIVILEGE BOUNDARIES ARE A SOCIAL CONSTRUCT PRIVILEGE BOUNDARIES ARE SOCIAL CONSTRUCT PRIVILEGE BOUNDARIES AND 6 SOCIAL CONSTRUCT

8

MAR GROKALDO

and the

Memory integrity is dead

How do we get it back?

Software Defenses

- Disabling flushing instructions
- Tracing via PMU Physical memory separation

clflush() ...no more

for (r in N): *(volatile char*) row1 *(volatile char*) row3 clflush(row1) clflush(row3)

clflush() ...no more

Cache eviction!

clflush() ...no more

Software Defenses

Disabling flushing instructions

Tracing via PMU

Physical memory separation

Event Num.	Event Mask Name	Umask Value	Description
3CH	UnHalted Core Cycles	00H	Counts core clock cycles whenever the logical processor is in CO state (not halted). The frequency of this event varies with state transitions in the core.
3CH	UnHalted Reference Cycles ¹	01H	Counts at a fixed frequency whenever the logical processor is in CO state (not halted).
СОН	Instructions Retired	00H	Counts when the last uop of an instruction retire
2EH	LLC Reference	4FH	Counts requests originating from the last level on-die cache
2EH	LLC Misses	41H	Counts each and the process of the p
	P	Event U. Num. D1H	MONITOR Table 19-6. Performance Coffee Table 19-6. Kaby Lake and Coffee Description Skylake, Kaby Lake Description Skylake Retired load instructions missed L3. Exclude: Mask Nnemonic Retired load instructions missed L3. Exclude: 20H MEM_LOAD_RETIRED.L3_MISS Retired load instructions missed

Software Defenses

Disabling flushing instructions

Tracing via PMU

Physical memory separation

Memory separation

Memory separation

Memory separation

Limitations

• Bit flips can occur on rows further away

Unknown memory geometry

Unknown geometry

Unknown geometry

Software Defenses

- Disabling flushing instructions
- Tracing via PMU
- Physical memory separation

Defenses vol. 2

- Error-correcting codes (ECC)
 - Refresh based mitigations • Double refresh rate
 - PARA

- pTRR
- TRR

Defenses vol. 2

- Error-correcting codes (ECC)
 - Refresh based mitigations • Double refresh rate
 - PARA

• pTRR

ECC

- ECC DIMMs used in server systems
- SECDED
 - single error correction and double-bit error detection
 - 3 bit flips: potentially undetectable and uncorrectable (ECCploit)

L. Cojocar et al, "Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks," in IEEE S&P, 2019

Defenses vol. 2

- Error-correcting codes (ECC)
- Refresh based mitigations
 - Double refresh rate
 - PARA
 pTRR
 TDP

Defenses vol. 2

- Error-correcting codes (ECC)
- Refresh based mitigations

PARA

pTRF

• Double refresh rate

Double refresh rate

Defenses vol. 2

- Error-correcting codes (ECC)
- Refresh based mitigations
 - Double refresh rate
 - PARA

pTRF

PARA

- Probabilistic Adjacent Row Activation
- The MC activates the adjacent rows with a probability p (<< 1) after a row is closed
- Stateless
- No significant overhead
- Memory geometry is unknown

Y. Kim et al, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," in ISCA, 2014

Defenses vol. 2

- Error-correcting codes (ECC)
- Refresh based mitigations
 - Double refresh rate
 - PARA
 - pTRR

Pseudo Target Row Refresh

• From "Thoughts on Intel[®] Xeon[®] E5-2600 v2 Product Family Performance Optimisation"

For best performance, use pTRR compliant DDR3 DIMMs and enable the pTRR feature.

 When non-pTRR compliant DIMMs are used, the E5-2600 v2 system defaults into double refresh mode, which has longer memory latency/DIMM access latency and can lower memory bandwidth by up to 2-4%.

Key idea:

• The MC monitors rows activations and performs targeted refreshes on the victim rows

Pseudo Target Row Refresh

Compliant DIMMs?

- The Serial Presence Detect (SPD) contains the Maximum Activation Count (MAC)
 - Untested
 - Unlimited
 - A discrete value (e.g. 300K)

Defenses vol. 2

- Error-correcting codes (ECC)
- Refresh based mitigations
 - Double refresh rate
 - PARA
 - pTRR
 - TRR

In-DRAM mitigations

The DDR4 landscape

Timeline

pTRR DDR3

Intel reports pTRR on DDR3 server systems

In-DRAM TRR

Earliest manufacturing date of RH-free DRAM modules

'12 '13 '14 '15 '16 '17 '18 '19 DIMMs we focused on DIMMs we focused on pTRR DDR4 First DDR4 generation is
pTRR protected DIMMs we focused on

Target Row Refresh (TRR)

- TRR-like mitigations track rows activations and prevent errors
 - Errors prevention by targeted refresh commands
- No Memory Controller support
- Embedded in the DRAM circuitry

Target Row Refresh (TRR)

- Removed from JEDEC DDR4 standard
- Memory vendors advertise RowHammer-free memory modules
 - Many possible implementations!
 - Security by obscurity
- No real evaluation

Abstractions

• Sampler

- Row activations monitoring
- It specifies which rows must be refreshed
- Inhibitor
 - Refresh
 - Remapping

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Reverse Engineering

H. Hassan et al., "SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies," in HPCA, 2017

Reverse Engineering

- What? The sampler size!
- How?
 - Issuing specific commands sequences by SoftMC to the DIMM
 - Targeting more then 2 aggressor rows!
 - The Many-sided RowHammer
- Why? To lead the sampler to discard a few rows

Methodology

- Pick **N** aggressor rows
- Perform a series of hammers (activations of aggressors)
 - 8K activations
- After each series of hammers, issue **R refreshes**
- 10 Rounds

Case study

- The TRR mitigation acts on every refresh command
- The mitigation can sample more than one aggressor per refresh interval
- The mitigation can refresh only a single victim within a refresh operation
- Sweeping the number of refresh operations and aggressor rows reveals the sampler size
- The sampling mechanism is affected by the addresses of aggressor rows

Findings

- The DDR4 substrate is much more vulnerable!
 - Bit flips with less then 50K activations per aggressor
- The sampler can be overfilled
 - Victims rows may not be properly refreshed by the Inhibitor
- Sampler properties
 - Timing-based
 - Frequency-based

ONE PROBLEM SOLVED... ONE MILLION PROBLEMS EFT

TRRespass

VUSec

SAFARI

Qualcom

TRRespass: The RowFuzzer

• The first row fuzzer

- Black Box fuzzing
- Scalable approach for testing
- Randomizing hammering pattern
 - # Aggressors
 - Aggressor location

BIT FLIPS...

BIT FLIPS EVERYWHERE

SPACE TINTE LIGHTYEAR

TRRespass: The RowFuzzer

• TRR not secure at 100%

- Discretely effective against state-of-the-art hammering patterns
- Vulnerable to novel patterns

What if combined with other kind of defenses?

- Double refresh rate: still flippy!
- ECC: Not tested
 - Many-sided RH usually causes multiple flips

Recap

- Software mitigations
 - High overhead
 - Lack of memory geometry information
- Hardware mitigations
 - Hardly deployable
 - Fragmented solutions
 - Missing a standard

Conclusions

- DDR4 device even more vulnerable than previous versions
- All major vendors are affected:
 - 90% of the market
- Fuzzing techniques are helpful
- After almost 10 years RowHammer is still a problem
- No prompt mitigation available

Thank You!

Pietro Frigo p.frigo@vu.nl, Emanuele Vannacci e.vannacci@vu.nl