
The Secret Codes Tell the Secrets

Zhang Qing@ByteDance and Bai Guangdong@UQ

CONTENTS

About Us01

About secret codes02

Vulnerabilities03

Q&A04

01
About Us

About Us

Bai Guangdong

Senior Lecturer from

The University of Queensland, Australia

Research on mobile security and protocol analysis

Zhang Qing

Senior Android security researcher from ByteDance

Research on Android security and payment security

02
Secret codes

Why focus on secret codes?

Android secret codes

• are well known by some geeks or engineers

• are used for test and for fun

• Secret codes’ security implications have not received enough attention. On the other hand, these secret

codes expose many attack surfaces which may be easy to access and have the system privilege.

In 2017, a security researcher pointed out that some Android devices have a backdoor in EngineerMode app for

diagnostics mode which can lead to root exploit.

On Twitter, Qualcomm VP of Product Security Engineering Alex Gantman stated that the EngineerMode app was

not authored by Qualcomm but others who had built it on top of a previous testing app.

Why focus on secret codes?

Android Permissions System

As is well known, Google has tightened Android’s permissions in recent years

• Gives users interfaces to specify fine-grained permissions for location, microphone, and camera in

Android 10/11

• Granting at run time

Android Access Control Mechanism

When we design an access control system, permission policies must be enforced consistently and globally.

If any interface can access the system resource with different permission requirement or even without

permission, the permission system is breached.

To some extent, this kind of entrance is backdoor.

BA

Authentication & Authorization

Backdoor

Android Permissions System

Secret codes

Secret Codes refers to codes which can access hidden features or secret menu (such as display information, testing hardware, and

software, etc).

These codes provide a fast way for manufacturers to verify that their smartphone and tablets are working as intended.

For example, Instead of “go to settings app > about phone > check IMEI number of your Android Phone”, you can simply dial *#06# to

know IMEI number. If such a secret code is executed, the system Dialer app will trigger the above code

Secret codes

How to create your own secret code?

So that whenever *#*#111222#*#* is submitted, your receiver will be notified.

<receiver android:name=".DiagnoserReceiver" android:enabled="true" android:exported="true">
<intent-filter>

<action android:name="android.provider.Telephony.SECRET_CODE"/>
<data android:scheme="android_secret_code" android:host="111222"/>

</intent-filter>
</receiver>

public class DiagnoserReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

if ("android.provider.Telephony.SECRET_CODE".equals(intent.getAction())) {
Log.e("proyx", intent.getDataString() + " I am here");

}
Log.e("proyx", intent.getDataString() + " I am here2");

}
}

Secret codes

public static void useSecretCodeActivity(Context context){
String secretCode = "111222";
Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:*#*#" + secretCode + "#*#*"));
context.startActivity(intent);

}

public static void useSecretCodeBroadcast(Context context){
String secretCode = "111222";
String action = "android.provider.Telephony.SECRET_CODE";
Uri uri = Uri.parse("android_secret_code://" + secretCode);
Intent intent = new Intent(action, uri);
context.sendBroadcast(intent);

}

Trigger the function

Why would secret codes breach Android’s
permission system?

Most of these secret codes come from the factory-installed apps such as EngineerMode or wt_secret_code_manager, and few may be

embedded in the basic apps such as contacts, calendar and so on.

Engineermode app and other apps which have the secret codes mostly are built-in and system-signed, and they possess many special

and externally accessible privileges (for convenience of developers)

Therefore, there are broad attack surfaces and severe security impact to the users.

Why would secret codes breach Android’s
permission system?

Code Function
##7780#*#* Resetting your phone to factory state - Only

deletes application data and applications
*2767*3855# It’s a complete wiping of your mobile also it

reinstalls the phones firmware
##273283*255*663282*#*#* For a quick backup to all your media files
*#06# Display the IMEI (International Mobile Equipment

Identity)
*#9900# System dump mode

##67# Erase call diversion

*43#[dial] Turn on call waiting
#43#[dial] Turn off call waiting
*#91909# Fingerprint test
*#301279# HSDPA/HSUPA settings
**04*[old Pin]*[new Pin]*[new Pin]# Change Pin (do not enter [and])
**05*[PUK]*[new Pin]*[new Pin]# Unlock Pin (do not enter [and])

Info codes

Backup codes

Testing codes

Configuration codes

Developer codes

USSD codes

03
Vulnerabilities

Vulnerabilities caused by secret codes

We found that system reset bypass vulnerabilities (formatting and resetting Android devices) almost influences all
OEMs’ devices
• the problem is gradually fixed by manufacturers as their Android OSes are upgraded

We found some vulnerabilities, e.g., using engineering mode to change the language violates the permission policies,
and turning on cameras may leak users’ privacy and information of users’ surroundings

In several phones, we also found that lock-screen PINs are leaked through logcat

What’s more, in some devices using the Engineering mode can reboot to Qualcomm’s Kernel FFBM mode.

The last but not the least, using the Engineering mode to reset and disable fingerprint lock is commonly found.

Vulnerabilities because of secret codes
System reset bypass (CVE-2017-8152 and another to be assigned soon)

CVE-2017-8152 to be assigned soon

Vulnerabilities because of secret codes
Leak lock-screen PINs and Remove PINs

Code snippet found in
EngineerMode app

Vulnerabilities because of secret codes

reboot to Qualcomm’s Kernel FFBM mode
1、FFBM: Fast Factory Boot Mode
To facilitate fast reboot and testing in factory, Qualcomm
developed FFBM mode which provides minimal user
interaction

2、Flow chart on the right: boot into Kernel FFBM

3、To quit FFBM mode and enter Android mode

1） adb reboot bootloader
2） fastboot erase misc
Many mobile devices erase /misc partition to quit from FFBM.
/misc includes crucial system configuration, CID (Carrier or
Region ID), USB configuration, hardware configuration, etc.
Once lost, the device doesn’t function normally
3） fastboot reboot

Boot
mode

=”ffbm”

Start Kernel

Execute /init process

Parse Command line

Boot to Full Android Mode Boot in Fast Factory Boot
Mode

Register “early-boot” and
“ffbm” action triggers

ffbm action triggers:
Set system files permissions

Set up initial sysfs entries
Start required services for

correct Operation of the tests
Executes MMI application

No Yes

Vulnerabilities because of secret codes

Vulnerabilities because of secret codes

Reset your fingerprint using engineering mode

Factory mode erased my fingerprint configuration

Fingerprint in factory mode erased my fingerprint,
so I can’t enter settings

Factory mode disabled my fingerprint
authentication, and customer service couldn’t fix it

Never use factory mode to calibrate fingerprint!

Vulnerabilities because of secret codes

We find that setting fingerprint in FFBM bypasses authentication and erases stored fingerprint

Fuzzing tool to find these vuls faster

Android OS APPList Context
Resources

Xml parsing
Manifest

Searching
android.provid
er.Telephony.S
ECRET_CODE

Using the host
to make POC

Testing

Summary

Consistency in access control system

Remove all “backdoors”as they will definitely be found

01

02

Remove all functionalities for testing only: EngineerMode APP03

Zhang Qing@ByteDance and Bai Guangdong@UQ

