
Explore deficiencies in the state-of-the-
art automatic software vulnerability
mining technologies
Wish Wu
Security Expert, Ant Financial Tian Qiong Security Lab

Target

Vulnerability mining is completely done by machine
and efficiency reaches or exceeds manual.

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Current Reality

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

1. Find the magic numbers or keywords in the code to construct the dictionary.
2. Remove codes that prevent "effective testing", such as checksum() in libpng.
3. Prepare a large number of seed files that can run to different code blocks.
4. Write programs that use random numbers to generate "valid data".
5. Call the API selectively to ensure that the specified code can be tested.
...

Feedback-driven Genetic Algorithm

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

feedback collector

unexpected
behavior checkers

tested object

stubs

test case generator

mutators
and

generators

feedbacks

test case

storage

meta data

seeds

interests

crashes

hangs

convert to
API call

selector

Core of GA

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

feedbacks:
trace-pc, trace-cmp, trace memcmp() …

selector & mutators & generators:
insert, delete, replace, dictionary, grammar …

unexpected behavior checkers:
address sanitizer, thread sanitizers …

…

Symbolic Execution

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

path tested object

parser or injector
storage

context
snapshots

unexpected
behavior
checkers

interests

crashes

hangs

meta data

cases

memory

contexts

constraint
solver

modeled
functions

constraint
expression

manager

Block AFL

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Block libFuzzer and AFL

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Block QSYM and KLEE

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Stutter Fuzzers

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

AFL libFuzzer KLEE QSYM

stutter_AFL.c Yes

stutter_libFuzzer_and_AFL.c Yes Yes

stutter_All_for_klee.c Yes

stutter_All_for_QSYM_libFuzzer_AFL.c Yes Yes Yes

https://github.com/arcslab/StutterFuzzers.git

Inapproximable Constraint

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

libFuzzer and AFL have their own methods to deal with condition statement.

libFuzzer:
Compile with “–fsanitize-coverage=trace-cmp”

if (A < B) è trace_cmp(A, B); if (A < B)

Use a variety of distance algorithms to calculate the similarity between A and B

Improved AFL:
if (A == constNumber)

è if (A[0:8] == constNumber[0:8]) {

trace_pc();

if (A[8:16] == constNumber[8:16]) {

trace_pc();

…

Unable to solve
inapproximable problems

Feedback of libFuzzer

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

clang -g -O2 -fno-omit-frame-pointer -fsanitize=fuzzer -c stutter_libFuzzer_and_AFL.c

Feedback of libFuzzer

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

https://github.com/llvm/llvm-project.git compiler-rt/lib/fuzzer/FuzzerTracePC.cpp

Trace code block

Trace comparison

https://github.com/llvm/llvm-project.git

Distance Algorithm of libFuzzer

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

https://github.com/llvm/llvm-project.git compiler-rt/lib/fuzzer/FuzzerTracePC.cpp

Make dictionary

Get hamming distance and absolute distance

https://github.com/llvm/llvm-project.git

Massive Bug-free Paths

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

flags = 0;
…
if(A) flags |= 1;
…
if(B) flags |= 1 << 1;
…
if(C) flags |= 1 << 2;
…
if(D) flags |= 1 << 3;
…
…
if(G) flags |= 1 << 7;
…
if (flags == 0xff)

bug();

1. Vulnerability exists only in very specific or unique path.
2. There are many conditions for the vulnerability.

Discovery

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

1. Coverage is losing its effectiveness.
2. Selecting path is better than traversing.
3. Constraint solver is necessary.

Code Review

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Find path to satisfy constraints

Sufficient and necessary constraints

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

if (flags == 0xff)
*((volatile uint8_t *)0) = 0; flags == 0xff

memcpy(dst, src, size); size > allocated_size(dst)
|| size > allocated_size(src)

vulnerability is a set of sufficient and necessary constraints

Code Review

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

1. Assume constraints that make the vulnerability exist can be satisfied.

2. Backpropagate constraints until all variables are input.

3. Check the solvability of constraints during backpropagation.

Variable Constraint Back Propagation

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

=

v0 0xff

=

| 0xff

v1 0x80

=

| 0xff

| 0x80

v2 0x40

Replace Symbol Expr with New Expr &&

…

Transformation of constraint expressions

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Replace Symbol Expr with New Expr

Variable Constraint Back Propagation

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Back propagate on LLVM bitcode

Back Propagation on LLVM bitcode

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Back propagate on bitwise AND

Variable Constraint Back Propagation

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

Demo
Solve the codes that block QSYM, KLEE, AFL and libFuzzer

Imitate manual code review

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

1. Make assumptions and initial constraints
assert(), address sanitizer …

2. Use fuzz tool to get concrete paths
libFuzzer,AFL…

3. Back propagate constraints over a certain path
4. Use approximation algorithms to satisfy constraints

Constraint-guided Fuzz ?

Meme

Wish Wu

Explore deficiencies in the state-of-the-art automatic software vulnerability mining technologies

I used reverse
symbolic execution
combined with an
improved genetic

algorithm to find an
existing bug.

Found 3 new bugs
with dumb fuzz.

Wish Wu (@wish_wu)

