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Target

Vulnerability mining is completely done by machine
and efficiency reaches or exceeds manual.
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Current Reality
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1. Find the magic numbers or keywords in the code to construct the dictionary.
2. Remove codes that prevent "effective testing", such as checksum() in libpng.
3. Prepare a large number of seed files that can run to different code blocks.
4. Write programs that use random numbers to generate "valid data".
5. Call the API selectively to ensure that the specified code can be tested.
...



Feedback-driven Genetic Algorithm
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Core of GA
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feedbacks:
trace-pc, trace-cmp, trace memcmp() …

selector & mutators & generators:
insert, delete, replace, dictionary, grammar …

unexpected behavior checkers:
address sanitizer, thread sanitizers …

…



Symbolic Execution
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Block AFL
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Block libFuzzer and AFL
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Block QSYM and KLEE
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Stutter Fuzzers
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AFL libFuzzer KLEE QSYM

stutter_AFL.c Yes

stutter_libFuzzer_and_AFL.c Yes Yes

stutter_All_for_klee.c Yes

stutter_All_for_QSYM_libFuzzer_AFL.c Yes Yes Yes

https://github.com/arcslab/StutterFuzzers.git



Inapproximable Constraint
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libFuzzer and AFL have their own methods to deal with condition statement.

libFuzzer:
Compile with “–fsanitize-coverage=trace-cmp”

if ( A < B )  è trace_cmp(A, B); if ( A < B )

Use a variety of distance algorithms to calculate the similarity between A and B

Improved AFL:
if ( A == constNumber )  

è if (A[0:8] == constNumber[0:8]) {

trace_pc();

if (A[8:16] == constNumber[8:16]) {

trace_pc();

…

Unable to solve 
inapproximable problems



Feedback of  libFuzzer
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clang -g -O2 -fno-omit-frame-pointer -fsanitize=fuzzer -c stutter_libFuzzer_and_AFL.c



Feedback of  libFuzzer
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https://github.com/llvm/llvm-project.git compiler-rt/lib/fuzzer/FuzzerTracePC.cpp

Trace code block

Trace comparison

https://github.com/llvm/llvm-project.git


Distance Algorithm of  libFuzzer
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https://github.com/llvm/llvm-project.git compiler-rt/lib/fuzzer/FuzzerTracePC.cpp

Make dictionary

Get hamming distance and absolute distance

https://github.com/llvm/llvm-project.git


Massive Bug-free Paths
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flags = 0;
…
if( A ) flags |= 1;
…
if( B ) flags |= 1 << 1;
…
if( C ) flags |= 1 << 2;
…
if( D ) flags |= 1 << 3;
…
…
if( G ) flags |= 1 << 7;
…
if (flags == 0xff)

bug();

1. Vulnerability exists only in very specific or unique path.
2. There are many conditions for the vulnerability.



Discovery
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1. Coverage is losing its effectiveness.
2. Selecting path is better than traversing.
3. Constraint solver is necessary.



Code Review
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Find path to satisfy constraints



Sufficient and necessary constraints
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if (flags == 0xff)
*((volatile uint8_t *)0) = 0; flags == 0xff

memcpy(dst, src, size); size > allocated_size(dst)
|| size > allocated_size(src)

vulnerability is a set of sufficient and necessary constraints



Code Review
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1. Assume constraints that make the vulnerability exist can be satisfied.

2. Backpropagate constraints until all variables are input.

3. Check the solvability of constraints during backpropagation.



Variable Constraint Back Propagation
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=

v0 0xff

=

| 0xff

v1 0x80

=

| 0xff

| 0x80

v2 0x40

Replace Symbol Expr with New Expr &&

…



Transformation of constraint expressions
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Replace Symbol Expr with New Expr



Variable Constraint Back Propagation
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Back propagate on LLVM bitcode



Back Propagation on  LLVM bitcode
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Back propagate on bitwise AND



Variable Constraint Back Propagation
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Demo
Solve the codes that block QSYM, KLEE, AFL and libFuzzer



Imitate manual code review
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1. Make assumptions and initial constraints
assert(), address sanitizer …

2. Use fuzz tool to get concrete paths
libFuzzer,AFL…

3. Back propagate constraints over a certain path
4. Use approximation algorithms to satisfy constraints

Constraint-guided Fuzz ?



Meme
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I used reverse 
symbolic execution 
combined with an 
improved genetic 

algorithm to find an 
existing bug.

Found 3 new bugs 
with dumb fuzz.



Wish Wu (@wish_wu)


