
A review of modern code
deobfuscation techniques
Arnau Gàmez i Montolio
Security Researcher

@arnaugamez

About

Graduated | Mathematics & Computer Engineering

President | @HackingLliure

Organizer | #r2con

Arnau Gàmez i Montolio | 23

Warning

This presentation may contain traces of assembly and maths

@arnaugamez

Contents

1) Code obfuscation

2) Mixed Boolean-Arithmetic

3) Program synthesis

4) r2syntia

5) Conclusions

@arnaugamez

Code obfuscation

Technical protection against Man-At-The-End (MATE) attacks, where
the attacker/analyst has an instance of the program and completely
controls the environment where it is executed.

Context

@arnaugamez

Code obfuscation

Transformation from a program P into a functionally equivalent
program P’ which is harder to analyze and to extract
information than from P.

What

P → Obfuscation → P’

@arnaugamez

Code obfuscation

Software protection

Who

Malware threats

@arnaugamez

Code obfuscation

- Intellectual property: algorithms/protocols in commercial software
- Digital Rights Management: access to software or digital content

Why

- Avoid automatic signature detection
- Slow down analysis → time++ → money++

Prevent Complicate reverse engineering

@arnaugamez

Code obfuscation
How

Apply a transformation to mess (complicate) the program’s control-
flow and/or data-flow at different abstraction levels (source code,
compiled binary or an intermediate representation) and affecting
different target units (whole program, function, basic block,
instruction…).

Many weak techniques can be combined to create a hard obfuscation
transformation.

@arnaugamez

Code obfuscation
How

Apply a transformation to mess (complicate) the program’s control-
flow and/or data-flow at different abstraction levels (source code,
compiled binary or an intermediate representation) and affecting
different target units (whole program, function, basic block or
instruction).

Many weak techniques can be combined to create a hard obfuscation
transformation

@arnaugamez

Control-flow obfuscation
Opaque predicates

An opaque predicate is a specially crafted boolean expression P that
always evaluates to either true or false.

@arnaugamez

Control-flow obfuscation
Control flow flattening

Change the structure of a function’s Control Flow Graph by replacing
all control structures with a central and unique dispatcher.

@arnaugamez

Control-flow obfuscation
Control flow flattening

int f(int x) {
int res = 0;
int i = 0;

while (i < 10) {
if (i % 2 == 0)

res = res + x;
i++;

}
return res;

}

@arnaugamez

Control-flow obfuscation
Control flow flattening

@arnaugamez

Data-flow obfuscation
Dead code insertion

Deliberately insert instructions that will not have any effect in the
computations’ outcome.

int f() {
int x, y ,z;
x = 1;
y = 2;
z = 3;
x = y + 4;
return x;

}

mov eax, 1
mob ebx, 2
mov ecx, 3
add ebx, 4
mov eax, ebx

@arnaugamez

Data-flow obfuscation
Encodings

Prevent a specific value to appear in clear at any point of the
program execution. They are composed of an encoding function f(x)
and its corresponding decoding function g(x).

f(x) = x – 0x1234
g(x) = x + 0x1234

...
sub eax, 0x1234 ; Apply encoding function
push eax ; Push eax on the stack
...
add dword [esp], 0x1234 ; Apply decoding function
...
pop ebx ; Retrieve decoded value

@arnaugamez

Data-flow obfuscation
Pattern substitution

Transform one or more adjacent instructions into a more complicated
new sequence of instructions preserving semantic behavior.

push eax lea esp, [esp - 4] push ebx
 mov dword [esp], eax mov ebx, esp
 xchg [esp], ebx
 pop esp
 mov dword [esp], eax

@arnaugamez

Data-flow obfuscation
Pattern substitution

Transform one or more adjacent instructions into a more complicated
new sequence of instructions preserving semantic behavior.

push eax lea esp, [esp - 4] push ebx
 mov dword [esp], eax mov ebx, esp
 xchg [esp], ebx
 pop esp
 mov dword [esp], eax

@arnaugamez

Code deobfuscation

Transformation from an obfuscated (piece of) program P’ into a
(piece of) program P’’ which is easier to analyze and to extract
information than from P’.

What

P’’ ← Deobfuscation ← P’

@arnaugamez

Code deobfuscation

Ideally P’’ ≈ P, but this is rarely the case:

● Lack of access to original program P to compare.
● Interest in specific parts rather than whole program.
● Interest in understanding rather than reconstructing.

Considerations

@arnaugamez

Contents

1) Code obfuscation

2) Mixed Boolean-Arithmetic

3) Program synthesis

4) r2syntia

5) Conclusions

@arnaugamez

MBA expressions
What

Informally, a Mixed Boolean-Arithmetic (MBA) expression is a
mathematical expression composed of integer arithmetic operators,
e.g. (+, −, ∗) and bitwise operators, e.g. (∧, ∨, ⊕, ¬).

More formally...

@arnaugamez

MBA expressions
What

@arnaugamez

MBA expressions
What

● Polynomial MBA:

E = 8458(x ∨ y ∧ z)³ ((xy) ∧ x ∨ t) + x + 9(x ∨ y)yz³

● Linear MBA:

E = (x ⊕ y) + 2 × (x ∧ y)

@arnaugamez

Obfuscation with MBA
MBA rewriting

A chosen operator is rewritten with an equivalent MBA expression.
The outcome of this process generates rewriting rules.

x + y → (x ⊕ y) + 2 × (x ∧ y)

@arnaugamez

Obfuscation with MBA
Insertion of identities

Let e be any subexpression of the target expression being
obfuscated. Then, we can write e as f⁻¹(f(e)) with f being any
invertible function (mod 2^n).

@arnaugamez

Obfuscation with MBA
Example

Consider E1 = x + y and the following functions f and f⁻¹ on 8 bits:

f(x) = 39x + 23

f⁻¹(x) = 151x + 111

Consider e1 obtained by applying the previous rewriting rule to E1:

e1 = (x ⊕ y) + 2 × (x ∧ y)

@arnaugamez

Obfuscation with MBA
Example

Then apply the insertion of identities produced by f and f⁻¹:

e2 = f(e1) = 39 × e1 + 23

E2 = f⁻¹(e2) = 151 × e2 + 111

Finally, expand E2 to retrieve the obfuscated expression derived from

the original expression E1 = x + y:

E2 = 151 × (39 × ((x ⊕ y) + 2 × (x ∧ y)) + 23) + 111

@arnaugamez

MBA expressions
Complexity metrics

We can represent an MBA expression as a Directed Acyclic Graph
(DAG), which identifies common subexpressions.

Complexity metrics based on DAG representation:
● Number of nodes.
● MBA Alternation.
● Average bit-vector size.

DAG representation of 2 × (x ∧ y) + (x ∧ y)

@arnaugamez

Simplification
Bit-blasting approach

Find a canonical representation of MBA expressions:
● Represent MBA expressions as boolean expressions by computing

the effect of each operation on each bit of the resulting value.
● Use Algebraic Normal Form (ANF) to guarantee unicity:

expressions obtained will only contain XOR (⊕) and AND (∧)
operators.

@arnaugamez

Simplification
Bit-blasting approach

Advantages:
● Transform the problem of MBA simplification into boolean

expression simplification.

Drawbacks:
● Canonicalization can be very expensive (in memory and time).
● Identification of word-level expressions from boolean expressions

is far from trivial.
● Scalability issues for large number of bits.

@arnaugamez

Simplification
Symbolic approach

Find an equivalent, but simpler form:
● Use existing simplification techniques for parts of the MBA

expression containing only one type of operator.
● Use a term rewriting approach to create the missing link between

subexpressions alternating different types of operators.
● Rewriting rules for deobfuscation can be obtained by inverting the

direction of rewriting rules used for obfuscation.

(x ⊕ y) + 2 × (x ∧ y) → x + y

@arnaugamez

Simplification
Symbolic approach

Advantages:
● The simplification is not impeded by an increasing number of bits.
● The representation of the expressions is far smaller than the

representation in the bit-blasting approach.

Drawbacks:
● Very sensible to the size of the obfuscated expression.
● Highly dependent on the chosen set of rewriting rules.

@arnaugamez

Contents

1) Code obfuscation

2) Mixed Boolean-Arithmetic

3) Program synthesis

4) r2syntia

5) Conclusions

@arnaugamez

Program synthesis
Motivating example

Consider the following function (an obfuscated MBA expression):

We can treat it as a black-box
and observe its behavior:

@arnaugamez

Program synthesis
Motivating example

Our objective is to learn (synthesize) a simpler function with the
same I/O behavior:

@arnaugamez

Program synthesis
What

Process of automatically constructing programs that satisfy a given
specification.

By specification, we mean:

● Somehow “telling the computer what to do”.
● Let the implementation details to be carried by the synthesizer.

@arnaugamez

Program synthesis
Specification

● Formal specification in some logic (e.g. first-order logic):

● A set of I/O pairs that describe the program behavior:

● A reference implementation (oracle) to generate I/O pairs.

@arnaugamez

Program synthesis
Approach

The nature of our problem leads to an inductive oracle-guided
program synthesis style, using the obfuscated code as an I/O
oracle:

● Generate a set of I/O pairs from the obfuscated code (oracle).
● Determine the best candidate program that matches the observed

I/O behavior.

@arnaugamez

Program synthesis
Practical considerations

● To construct candidate programs, we define a context-free
grammar that encompasses the primitive components (terminals)
and the ways to combine them (production rules).

● Set boundaries that delimit the program synthesis task (I/O pairs,
terminals and derivations of the context-free grammar) and ensure
that it terminates (iterations and time).

● Decide when a synthesized candidate is valid enough and whether
to introduce some kind of equivalence checking.

@arnaugamez

Existing work
Syntia (2017)

Monte Carlo Tree Search (MCTS) based stochastic program synthesis.
● Convert the problem of finding a candidate program into a

stochastic optimization problem.
● At each iteration we generate intermediate results instead of

actual candidate programs.
● Evolve towards a global optima (best candidate program) guided

by a cost function.

@arnaugamez

Existing work
Syntia (2017)

A public (and open source) implementation is available :)

@arnaugamez

Existing work
QSynth (2020)

Offline enumerative program synthesis.
● Given a context-free grammar, generate all programs up to a

certain number of derivations.
● Create offline lookup tables mapping each candidate program to

its I/O behavior.
● Perform an exhaustive search for candidate programs matching

the oracle’s I/O behavior.

@arnaugamez

Existing work
QSynth (2020)

Most significant contribution (IMHO): Split an obfuscated expression
into smaller subexpressions, synthesize them individually and then
reconstruct the total simplified expression.

@arnaugamez

Existing work
QSynth (2020)

Unfortunately, there is no public implementation available :(

@arnaugamez

Program synthesis
Limitations

● Semantic complexity.
● Non-determinism.
● Point functions.

@arnaugamez

Contents

1) Code obfuscation

2) Mixed Boolean-Arithmetic

3) Program synthesis

4) r2syntia

5) Conclusions

@arnaugamez

r2syntia
Components

● radare2: fully-fledged reverse engineering framework.
● ESIL: radare2 emulation engine.
● Syntia: program synthesis based framework for deobfuscation.

@arnaugamez

r2syntia
Integration

● Call r2syntia from an active radare2 shell were we are performing
the analysis of a binary that contains obfuscated code.

● r2syntia leverages ESIL to generate the I/O pairs of values for the
specified variables (registers and memory locations).

● Invoke Syntia from r2syntia with the generated I/O pairs.

@arnaugamez

r2syntia
Result

Synthesize the code semantics of the output variable (register or
memory location) with respect to the input variables (registers or
memory locations).

@arnaugamez

r2syntia
Guided example

@arnaugamez

r2syntia
Guided example

@arnaugamez

r2syntia
Guided example

Obfuscate the functions with Tigress v2.2:

● EncodeArithmetic: replaces the original expression with an
equivalent (more complicated) MBA expression.

● EncodeData: encodes integer arguments before calling the
function and decodes them at return.

@arnaugamez

r2syntia
Guided example

@arnaugamez

r2syntia
Guided example

@arnaugamez

r2syntia
Guided example

@arnaugamez

r2syntia
Guided example

Demo: Obfuscated ASM

@arnaugamez

r2syntia
Guided example

If we address the task of deobfuscating this code through a symbolic
execution approach, we could obtain an expression representing the
return value of the function we are analyzing, with respect to the
input variables.

Let’s observe the resulting obfuscated MBA expression obtained
using Metasm.

@arnaugamez

r2syntia
Guided example

If we address the task of deobfuscating this code through a symbolic
execution approach, we could obtain an expression representing the
return value of the function we are analyzing, with respect to the
input variables.

Let’s observe the resulting obfuscated MBA expression obtained
using Metasm.

@arnaugamez

r2syntia
Guided example

Observe that the syntactic complexity of this expression makes it
unapproachable and useless to derive any understanding from it.

However, its semantic behavior is fairly simple. Thus, we can
leverage r2syntia to extract the actual code semantics.

Demo: r2syntia

@arnaugamez

r2syntia
Publication

Already published!

Go play with it: https://github.com/arnaugamez/r2syntia

https://github.com/arnaugamez/r2syntia

@arnaugamez

Contents

1) Code obfuscation

2) Mixed Boolean-Arithmetic

3) Program synthesis

4) r2syntia

5) Conclusions

@arnaugamez

Conclusions
Takeaways

● MBA expressions can be leveraged to obfuscate the data-flow of a
program.

● Current deobfuscation techniques (e.g. symbolic execution) to
address simplification of this type of data-flow obfuscation are
limited by being strongly tied to syntactic complexity.

● Novel program synthesis approaches allow to reason about the
semantics of the obfuscated code (instead of syntax).

@arnaugamez

Conclusions
Future work

Theoretical continuation:

● Further study and formalization of MBA expressions’ treatment.

Practical continuation:
● Improve r2syntia (WIP).
● Implement an (open source) solution for subexpressions’

synthesis.
● Detect patterns and memorize synthesized tasks.

@arnaugamez

Conclusions
References I

● Bruce Dang et al. “Practical Reverse Engineering: X86, X64, ARM,
Windows Kernel, Reversing Tools, and Obfuscation” (chapter 5).

● Banescu et al. “A Tutorial on Software Obfuscation”.

● Christian Collberg and Jasvir Nagra. “Surreptitious Software:
Obfuscation, Water-marking, and Tamperproofing for Software
Protection”.

● “Advanced Binary Deobfuscation”: https://github.com/malrev/ABD

https://github.com/malrev/ABD

@arnaugamez

Conclusions
References II

● Ninon Eyrolles. “Obfuscation with Mixed Boolean-Arithmetic
Expressions: reconstruction, analysis and simplification tools”.

● Tim Blazytko et al. “Syntia: Synthesizing the Semantics of
Obfuscated Code”.

● Robin David, Luigi Coniglio, and Mariano Ceccato. “QSynth - A
Program Synthesis based approach for Binary Code Deobfuscation”.

Arnau Gàmez i Montolio, me ‹ατ› arnaugamez ‹δοτ› com @arnaugamez

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

