
As We Far-Enough to the Left Yet?
DevSecOps, Chaos Security,
and Not Being Left Behind
Eddie Schwartz
Chief Security Officer, Block.one

This presentation contains my personal views
and opinions and not those of my employer.

Let’s Talk About Product Security

• How We Used To Do It

• How We Are Still Doing It…Mostly

• How IT is Doing It…Without Us

• “Moving More to the Left” or How
We Could Do it Better

• Q&A

Product Security Wasn’t What You Think…

• In the early days…The Rainbow
Series and TPEP
• First, you needed to know how the

system would be used and what it
would be doing

• Then, you needed to know info such
as who would use it and where it
might be used

• Then it was all about testing,
evaluation, and proving what you
thought was true, is true

• The more sensitive and critical, the
longer and harder it was

NIAP
Common
Criteria
(CCEVS)

NVLAP PPs and
TOEs

The Long and Winding Road to Secure SDLC

Risk Analysis Configuration
Management

Methodological
Design

Life Cycle
Model

Tools and
Techniques

Developmental
Security

Flaw
Remediation Tests

Common Criteria (CC) Secure Software

Development Approach (ISO 15408)

• This approach included additional new aspects to security by design
and functional security integration that previous generations didn’t
have including:
• Threat Modeling and Security Architecture
• Secure Design and Requirements
• Other models emerged that included these dimensions and other

tangents

What We Learned from Doing the Same Thing for
So Long: Key Elements of Security By Design
Risk Analysis Identify the most probable threats and

analyzing the related vulnerabilities
Secure Configuration
Management

Includes secure access to source code,
build pipelines and other SDLC
artifacts

Threat Modeling Understanding “what can go wrong” by
understanding meaningful security risk

Physical Security and OPSEC Security for the physical operating
environment including issues with
users and admins

Security Requirements Techniques, methods and standards for
reducing identified risks

Vulnerability Management Black box and white box testing.
Management of inherited and new
vulnerabilities

Security Architecture The secure aspects and standards of the
design of the system

Secure Integration Integrating COTS and XaaS capabilities
into your code securely

Code Analysis Various techniques to review the code,
peer review, static, dynamic, fuzzing, etc.

Security Training Helping all developers be part of the
security team and have fewer security
bugs

The Good and the Bad of the Old Ways

• The Good:
• Understanding WHAT you planned to build

• Having defined security architecture,
requirements and controls

• Having a clear testing regime that could prove
requirements were implemented

• The Bad:
• The threat modeling was not typically

dynamic
• TPEP took FOREVER for high security systems,

CC and other models not much better

• Threats and tech change too often, so this
approach is not practical for volatility and
DevSecOps

So, the Old Approach Seems OK, Right?

• No, it’s not working and needs to change, but:
• It’s HARD to do product security
• It involves CODE, and most of us in security weren’t

trained for that – the ones who were don’t want to
do it that way anymore, etc.

• It’s not a pen test
• It’s not a list of NIST or ISO 27001 controls
• It’s not a compliance checklist
• The security team can’t do it in a silo and need to

work with others
• IT / Engineering won’t just do what we say because

they are more aligned with the business than we are

What are they doing over there in IT?
• They are busy over there in IT, Engineering or

whatever you call it….
• They have a “product backlog” and they are

performing two-week sprints
• They are doing peer reviews and “retrospectives”
• They are constantly updating and changing things
• Two weeks? I mean, come on, really?

• Meanwhile, we in security are waiting to do
our pen tests, trying to figure out what
Kubernetes security configurations should look
like or what “standards” we should provide for
Python programmers…

Engineering Really Does Want Security Help!

• Nobody wants some security or
privacy-related mess on their hands

• But Engineering and IT move at a
certain speed / cadence – they can’t
wait for Security to give their blessing

• They want a partner and need a
Security SME

• They want us to work the way they do
versus follow a “security framework”

What Are Some Key Differences?

• Engineering
• Iterative
• Encourages interaction
• Transparent
• Promotes frequent adjustments
• Delivers working products quickly

(Beta, MVP, etc.)
• Comfortable with uncertainty

• Security
• Point in time
• Top down dictated
• Secretive or siloed
• Dislikes frequent changes / pivots
• Struggles with short timelines or

release of incomplete products
• Uncertainty is bad

IT Keeps Moving Faster and Is Becoming More Agile
Product
Backlog

Sprint
Planning

Sprint Backlog

Daily Scrum
Potentially
Releasable
Increment

Sprint Review

Sprint
Retrospective

• Security doesn’t have a natural
home on this slide the way we
think about it today. For example:
• A security “feature” like MFA has to

be part of the Product Backlog to
make it into Spring Planning, etc.

• If security requirements are not clear
from the architecture or design of the
software, the requirements that have
to be written into user stories or be
part of the natural capabilities of the
team or its cycle

Product
Owner

Development
Team

Scrum
Master

And They Are Using CHAOS Too…A Different One
• In fast-paced environment, there

isn’t enough time for QA testing,
and it has diminishing returns

• Chaos Engineering is the use of
experimental and potentially
destructive failure or fault injection
testing to uncover vulnerabilities
and weaknesses within a complex
system

• It provides an approach allows for
organizational learning, increased
reliability and a greater
understanding of complex system
dependencies

Not This…..

DevSecOps – What is It?

• DevSecOps is the complete integration of
traditionally siloed security functions into a
DevOps or Agile engineering environment

• Differences between organizations that are “agile”
or DevOps often revolve around the wall that may
exist between development and operations or
product security and security operations

• Depending upon your company, any hybrid of
these approaches may be adopted and evolved as
your engineering requirements change

• But the key common element is full integration
between security and engineering

• Incremental Threat
Modeling

• Secure Design and
Architecture

• Software Comp Analysis
• Code Review and Testing
• Cataloging of

vulnerabilities and risks

• Automated Testing
• Container and Application

Signing
• Pipeline Security

• CM
• Network Security
• Cloud, Kubernetes,

Container Security

• Log Management and
Analytics

• Security Monitoring
• SOC / Threat Hunting
• Vulnerability Management

• Compliance Management
• Incident Response

Illustrative Activities within DevSecOps…Let’s Focus on
the Left for Now….

DevSecOps: Plan and Create

• For a new product or service, an initial
product definition and design will be created
by engineering and stakeholders

• Security works as part of the team to create
the design of the product and the overall
architecture

• The Plan and Create phases become 2- or 4-
week sprints where product “increments” are
created iteratively

• NOTE: It’s critical that the ProdSec team
members be part of the Scrum team, have
the right technical skills, and be available for
the sprint cycle activities

• Deliverables:
• Threat Model (that will become an

incremental threat model in subsequent
iterations of plan and create)

• Security Architecture – including data
flow diagrams

• Security Themes and Objectives
• Security Requirements

• These deliverables are iteratively updated by
the entire team are transparent to the team
in JIRA, Confluence or a similar system

• Threat modeling may be tracked in a variety
of commercial tools and there are open
source threat modeling as code tools

DevSecOps: Verify

• The Verify phase is where security tools and
techniques are applied to the work performed
during the Sprint by the Development Team

• Additionally, SME security support may aid in
both security tool operation or code review
during this phase

• Ideally, secure coding practices should be
fostered within the Development Team (with
help from Security)

• Deliverables:
• Ongoing results and improvements from

SCA tools
• Analysis and fixes applied from

continuous application of SAST and DAST
• Peer manual code review results as

required based on threat model-driven
needs

• Issues revert to product backlog as
needed and are tracked in JIRA (or other
tool)

DevSecOps: Preproduction and Release

• CI/CD requires automation and removing as
many manual processes as possible – security
too

• Most preproduction and release processes
should be automated and only should hold or
stop when “high” or “critical” error conditions
are met

• This aspect of DevSecOps requires dedicated
focus and deep technical expertise from
security teams because it is both error-prone
and complex

• Deliverables:
• Automated pipeline testing including any

final SAST and DAST
• Cryptographic signing of various

components of the increment by
designated authorities

• Integrity verification of the pipeline
process itself as part of the release
process

• CM
• Network Security
• Cloud, Kubernetes,

Container Security

• Log Management and
Analytics

• Security Monitoring
• SOC / Threat Hunting
• Vulnerability Management

• Compliance Management
• Incident Response

Some Guidance for the Right Side of the Equation

General Right-side Considerations

• If you are in a DevOps shop and using
containers, your infrastructure is likely deployed
as code – this is good

• You can deploy all kinds of fun things as code,
for example: secure configurations, compliance
auditing, vulnerability management and other
security monitoring agents

• Your security team must be embedded with the
engineering team that performs pipeline
automation to achieve security goals

• Key takeaway: Many of the product backlog
items that occur on the right side of DevSecOps
are internal product capabilities that the
product managers and owners may not consider
on their own

• It’s critical for the security team to ask for
internal product backlog items that satisfy
critical needs for security operations the right
side

• Ideally, these backlog items would be treated
like any other backlog item, and be executed by
the development team (automation team, for
example) within a sprint

• However, depending on your individual
situation, you may need a security-focused
development team for internal-facing security
backlog items of this type, particularly if they
are large in nature

Eddie Schwartz, @eddieschwartz

