Penetration Testing
Windows Vista™
BitLocker™ Drive Encryption

Douglas Maclver
Penetration Engineer
System Integrity Group, Microsoft Corporation

Hack In The Box 2006/09/21
Trustworthy Computing

“The security of our customers' computers and networks is a top priority, and we are committed to building software and services to better help protect our customers and the industry.”

Microsoft

- Threats discussed in this presentation are not secrets
- Our customers’ adversaries are aware of these attack vectors
- Our customers need this information too, so that they may make informed decisions about the level of data protection that they need
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

Questions (at the end, please)
BitLocker Drive Encryption: Feature Introduction

- Data Confidentiality
 - Encrypts the OS volume
 - Secure decommissioning

- System Integrity
 - Cryptographically validates pre-OS components

- The lost or stolen laptop is the primary threat scenario

- Provides multiple levels of protection with basic and advanced modes
Adapted from Jesper M. Johansson, “Security Management”, Microsoft TechNet
BitLocker Key Points

- BitLocker in its basic mode provides a higher-level of data security with no additional security burden on the user.

- BitLocker provides a range of options that allows customers to configure BitLocker for their security needs.

- BitLocker should be deployed on platforms that have the “Designed for Windows” logo.
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

- Questions (at the end, please)
Trusted Platform Module v1.2

- BitLocker uses TPM v1.2 (not v1.1)
 - Similar to the functions and security properties of Smart Cards
 - Fastened onto motherboard
 - Platform Configuration Registers (PCRs)
 - Can have Tamper Resistance / Reaction / Evidence
 - Trusted Computing Group (TCG) specification
- BitLocker can be used without TPM
 - But this mode does not include BitLocker’s pre-OS integrity validation
BitLocker Modes

- Basic
 - TPM

- Advanced
 - TPM + PIN
 - TPM + USB Dongle
 - USB Dongle
Trusted Computing Base (TCB)

“The totality of protection mechanisms within a computer system, including hardware, firmware, and software, the combination of which is responsible for enforcing a security policy.” [INFOSEC glossary]

BitLocker’s use of a TCB:
- Trusted identification of code and data loaded during boot
- Foundation that OS builds on
 - OS Code Integrity
 - x64 platforms: digital signatures for kernel-mode software
TCB Validation

M: Measurement
MBR: Master Boot Record
Boot Mgr: Boot Manager

TPMs Platform Configuration Registers (PCRs)
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

- Questions (at the end, please)
Adversary Objectives

- Read plaintext data off of the disk
- Gain access to encryption keys
- Gain control of privileged threads
Physical Memory Ghosts: Warm

Warm ghosting
1. Attacker boots system
2. Attacker warm reboots into OS which avoids destruction of RAM image
3. Attacker then can access ghost secrets in memory

Mitigations:
- Platforms where BIOS clears memory on reboot
- BitLocker advanced modes
Physical Memory Ghosts: Cold

- Cold ghosting
 - Physical memory cells may retain charge long enough to be copied
 - Iceman attack

- Battery-backed DIMMs make this even easier

- Mitigations: BitLocker advanced modes
Cheap, Easy, & Distributable HW-oriented Attacks

- PCI bus exploit with repurposed PC Card device and DMA (direct memory access)
 - e.g. CardBus DMA technique demoed by David Hulton at ShmooCon, 2006

Mitigation: BitLocker advanced modes
Cheap, Easy, & Distributable HW-oriented Attacks

- Xbox v1-style attacks
 - LPC bus, HyperTransport bus, etc.
 - *Hacking the Xbox*, by Andrew “bunnie” Huang

Mitigation: BitLocker advanced modes
Threats against the TCB

- Executing code-of-choice within the TCB
 - Controlling the instruction pointer
 - Potential pre-OS component vulnerabilities (bootmgr, winload, winresume, etc.)

- Mitigation: MS Security Development Lifecycle
- Mitigation: BitLocker advanced modes
Threats against the TCB

- Core Root of Trust for Measurement (CRTM) is intended to be ‘immutable’ portion of BIOS

- Attacking the CRTM
 - Execute chosen-code in CRTM
 - Control / prevent measurements
 - Physically remove it
 - Attack existing CRTM (e.g. buffer overrun)
 - Attack secure update-mechanism to inject unauthorized code into CRTM

- Mitigation: BIOS meets BitLocker requirements
- Mitigation: BitLocker advanced modes
Ciphertext Manipulation Threats

- Attacker can alter disk sectors offline, which will subsequently be decrypted during boot.
- AES-CBC allows attacker to make known deltas in the decrypted data.
- These deltas could be used to alter the security posture of the stolen laptop.

Mitigation:

- AES-CBC + Diffuser
- BitLocker advanced modes
Encryption without Diffuser

Encrypt with AES-CBC

Decrypted Data

Decrypt with AES-CBC
Modification of AES-CBC Ciphertext

Attacker flips a single bit in the ciphertext (0xf8 to 0xf9)

One block randomized

Known delta in next block

Decrypt with AES-CBC
Attacker flips a single bit in ciphertext (0x58 to 0x59)

Entire sector is randomized

Decrypt with AES-CBC + Diffuser
Ciphertext Manipulation Threats

- AES-CBC + Diffuser helps, but there are still threats
 - Cost: randomize entire sector (512+ bytes)
 - Result: limited control of where data changes occur
- Effects:
 - denial of service
 - critical services fail to load?
- AES-CBC 128 + Diffuser 128 is default mode of BitLocker
- Mitigation: BitLocker advanced modes
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

- Questions (at the end, please)
Advanced Mode: TPM + PIN
TPM + PIN Threats

- For ‘unseal’ to succeed:
 - TPM Authdata value correct
 - TRUNC(SHA256(PIN), 20B)
 - TPM PCR values correct
- Attack: Brute-force PIN

- Mitigation: TPM Anti-hammering: TPM Authdata failure lockout geometrically increases
- Mitigation: Use platforms that meet BitLocker requirements
TPM + PIN Key-wear Analysis

- Function keys used for input F1..F10… these are not commonly used
- Speculation: an adversary may be able to determine which keys occur in the PIN

- Mitigation: longer pins (via group policy), diverse pins; numeric keys will work on many keyboards
Boot Rootkits

- BitLocker detects boot rootkits installed *offline*
- BitLocker detects *online* boot rootkits that are *BitLocker-unaware*
- BitLocker does *not* protect against boot rootkits that are *BitLocker-aware* and travel through the OS.

- Mitigation: MS Security Development Lifecycle
- Mitigation: Windows Vista OS Security, Config, Best Practices
Multi-visit / Premeditated Attacks

- Attacker hobbles BitLocker protection *prior* to laptop loss or theft
- There are many advance-strikes

Mitigations: Windows Vista OS Security, Best Practices
Cryptographic Threats

- Diffuser is a new algorithm and implementation
- BitLocker’s AES-CCM is a new implementation of the AES-CCM standard
- Correct use of cryptographic APIs, counters, IVs, nonces, etc.
- Chosen- & Known-plaintext threats
- Ciphertext modification threats

Mitigations: MS SDL, internal crypto review & validation

Mitigations: external crypto review & validation, Crypto 2006, FIPS, Common Criteria
Lost While Unlocked

- Device is found, stolen, or illicitly accessed after the authorized user has authenticated, but before the device reaches the off state
- Also known as “One Chance” attacks
- Physical Memory Threats
- Cheap, Easy, & Distributed HW-based Threats

Mitigations: Best Practices, Group Policy for Hibernate
Data Remanence: Electromigration

- Relocation of metal atoms due to high current densities
- Detection:
 - OEM ports
 - Mechanical probing
 - Focused ion beam devices

Peter Gutmann, “Data Remanence in Semiconductor Devices”, August 2001
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

Questions (at the end, please)
Pen Testing BitLocker: The Team

- Team of several dedicated Microsoft penetration engineers
- Collaborated with the Microsoft Secure Windows Initiative (SWI) team
- Engagements with several external security vendors
- Engagements with many partners
- Engagements with security researchers
Pen Testing BitLocker: The Process

- Microsoft Security Development Lifecycle (SDL)
- Threat Modeling / Threat Storming
- Component data flows
- Large feature spanning hardware and software
- Broad and deep analysis
- Security code review
- Software and hardware pentests
- Trust-boundary Fuzzing
- Automated Analysis Tools
Presentation Outline

- BitLocker Introduction
- BitLocker Technical Highlights
- Pen Testing BitLocker
- Top Threats Part 1 (basic mode)
- Top Threats Part 2 (advanced modes)
- Summary

- Questions (at the end, please)
Hardware platform is the new attack perimeter

- As some cracks are filled, other surfaces become interesting
- OS and Network are being hardened
- Data / Device mobility is prevalent
- The user and his devices have become the attack vectors
- Widely-deployed disk encryption will result in an increased attack effort against hardware

Adapted from David Maynor, “You are the Trojan!”; ToorCon 7, 2005
BitLocker Key Points

- BitLocker in its basic mode provides a higher-level of data security with no additional security burden on the user.

- BitLocker provides a range of options that allows customers to configure BitLocker for their security needs.

- BitLocker should be deployed on platforms that have the “Designed for Windows” logo.
More Information

Microsoft Trustworthy Computing
 http://www.microsoft.com/mscorp/twc

BitLocker™ Questions
 e-mail bdeinfo[at]microsoft.com

BitLocker™ Blog
 blogs.msdn.com/si_team

Microsoft Security Development Lifecycle (SDL)
 msdn.microsoft.com/security/sdl

Trusted Computing Group (TCG)
 www.trustedcomputinggroup.org

Windows Hardware & Driver Central (WHDC)
 www.microsoft.com/whdc

© 2006 Microsoft Corporation. All rights reserved.
Thank you for attending.

Questions?