
Having fun with apple’s 
IOKit	



Ilja van sprundel <ivansprundel@ioactive.com>	





who am I	



•  Ilja van sprundel	



•  IOActive 	



•  netric 	



•  blogs.23.nu/ilja	





Agenda	


•  Introduction	



•  what is the IOKit	



•  why	



•  UserClients	



•  entry points 	



•  marshaling data 	



•  api’s usage	



•  potential for abuse	



•  conclusion	



•  Q&A	





Introduction	



•  Preliminary research 	



•  IOKit is in kernel code for drivers 	



•  a lot of it ends up being auto generated 
code	



•  because of this it’s virtually unauditted 	



•  a new playground :)	





what is the IOKit?	



•  kernel framework 	



• most drivers for OSX use them 	



•  preferred over others (nkext’s, BSD)	



•  offers wide range of api’s to do things in 
drivers	





what is the IOKit?	

•  C++ code (well, a subset really)	



•  no exceptions, templates, multiple 
inheritance	



•  it’s ment to look like something userland 
dev’s are willing to touch 	



•  has a well defined interface for interaction 
with userland (passing data back and forth, 
usually for configuration)	



•  functionally not unlike NT’s IOMgr	



•  that’s what I’ll be talking about 	





why ?	



• Why look at the IOKit ? 	



•  juicy target 	



•  very little coverage 	





UserClients	



•  Almost all communication with the IOKit is 
done through UserClients	



•  A C++ class 	



•  All drivers that have UserClients Inherit 
from IOUserClient, to make their own 
userclients 	



•  abstracted away the real communication	





UserClients	





UserClients	



•  3 ways of inputting data really 	



•  old UserClient (synchronous)	



• New UserClient (10.5.x and above) 
(asynchronous)	



•  add an IOKit systemcall	





Entry points: Mach	



•  In kernel mach server	



•  need to send a mach message 	



•  port’s receiver has to be kernel space 	



•  when this is true ipc_kobject_server() is 
called	





Entry points: Mach	



•  Here’s where things get a little wobbly	



• most of this stuff is Autogenerated MIG 
(mach interface generator) code!	



•  unless you compile the code you won’t see 
it	



•  ~20 in kernel rpc services	





Entry points: IOKit	


•  The mach message header id has to match the 

IOKit one. 	



•  once this is done, all input is passed on to the 
IOKit subsystem ()	



•  iokit_server_routine	



•  specific IOKit functions have numbers (there’s 71 
of them, all auto generated!)	



•  these are also encoded in the message header id	





Entry points: IOKit	


•  71 functions allow the buildup of a 

protocol	



•  which driver to talk to 	



•  info about the driver 	



•  how to marshal data	



• mapping in data 	



•  ... 	





Entry points: IOKit 
syscalls	



•  IOKit syscalls can also export systemcalls 	



•  iokit_user_client_trap()	





Entry points: IOKit 
syscalls	



•  user has to have an open userclient 
connection	



•  specifies the syscall he wants by number	



•  allows for up to 6 arguments	



•  arguments are passed directly to syscall	



•  no validation done, it could be anything	





Marshaling data	



•  passing data to IOKit UserClient methods	



•  index number for the method	



•  input and output 	



•  2 types of data	



•  scalar 	



•  structure	





Marshaling data	



•  gives 4 combinations in total 	



•  input scalar, output scalar 	



•  input scalar, output struct	



•  input struct, output scalar	



•  input struct, output struct 	





Marshaling data	



•  once everything is put in the right structurs	



•  the marshaling code calls the 
externalMethod() method on the 
UserClient	



•  this one will call it’s actual UserClient 
Method, based on the index	





Marshaling data	



•  Here’s how it looks:	





Marshaling data	



• mapping index numbers to methods and 
syscalls	



•  UserClient’s are supposed to implement 2 
functions to do the mapping:	



•  getExternalMethodForIndex(uint idx);	



•  getExternalTrapForIndex(unit idx);	





Marshaling data	



• Method index mapping	





Marshaling data	



•  syscall index mapping	





Marshaling data	



•  index mapping bug:	



•  off-by-one :)	





Api’s	



•  IOKit is a massive framework 	



•  has api’s for almost everything 	



• most of it is it IOLib.cpp	



•  will talk about some of them 	





api’s: memory 
allocation	



•  IOMalloc	


•  void * IOMalloc(vm_size_t size);	



•  IOMallocAligned 	


•  void * IOMallocAligned(vm_size_t size, vm_size_t alignment);	



•  IOMallocContiguous	


•  void * IOMallocContiguous(vm_size_t size, vm_size_t alignment, IOPhysicalAddress * physicalAddress)!



Api’s: Memory 
allocation	





Api’s: Memory 
allocation	





Api’s: Memory 
descriptors	



• When marshaling data, memory 
descriptors are used 	



•  allows both user and kernel to share data 	



•  not unlike NT’s MDL’s (Memory descriptor 
lists)	





Api’s: Memory 
descriptors	





types of bugs	



•  The usual applies 	



•  int overflows	



•  buffer overflows	



•  ...	





types of bugs	



•  Race conditions due to memory 
descriptors being used 	





types of bugs 	



•  format string bugs	



•  IOKit code is really ment to be more open 
towards dev’s who don’t really do low-
level kernel stuff 	



•  offers a mutlitude of api’s	



•  including format functions	





types of bugs	



•  IOLog() is a great example 	



•  google (codesearch) dork: 	



• IOLog\([^”]*\) lang:c++	





fmt bug examples	





fmt bug examples	





fmt bug examples	





potential for abuse	


•  summary:	



•  indexes for methods need to be validated by driver (in 
getExternalMethodForIndex())	



•  indexes for methods need to be validated by driver (in ExternalMethod())	



•  indexes for systemcalls need to be validated by driver (in 
getExternalTrapForIndex())	



•  arguments to syscalls not validated in any way	



•  driver should watch out with format functions in IOLib (IOLog, printf, 
OSKextLog, ...)	



•  IOLib’s malloc wrappers need some work 	



•  Race conditions with shared memory	





Conclusion	

•  IOKit is an interesting 	



•  relatively new (compared to IOMgr, unix 
ioctl’s, ...)	



•  Has had very little scrutiny so far, lots of 
potential for bugs in framework itself	



•  not quite sure of the c++ thing -imo kernel 
code should be plain c- lots of potential for 
driver bugs	



•  The entrypoints are virtually un-auditted, 
since the code is autogenerated on compile 



Conclusion	



•  some positive notes 	



• mach copies all userdata to kernel, so 
generally no user pointers passed to IOKit 
(capture)	



•  ofcourse there might be embedded 
pointers in the driver specific code 	





food for though/todo	



•  fuzzing (working on it, took more time 
then I figured I needed)	



•  IOKit 71 callbacks	



•  this code looks really really naive	



•  looks like it’ll have lots of bugs 	



•  design bugs ? 	





Questions ? 	




