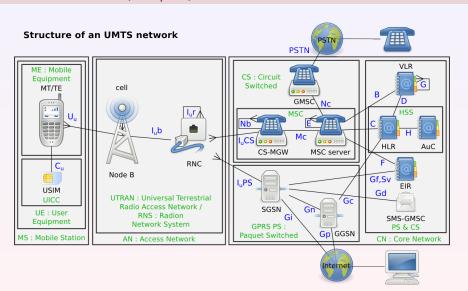
Femtocells: a Poisonous Needle in the Operator's Hay Stack

Ravishankar Borgaonkar, Nico Golde, Kévin Redon

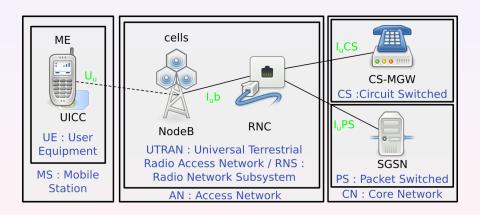
Technische Universität Berlin, Security in Telecommunications femtocell@sec.t-labs.tu-berlin.de

HITB 2011, Kuala Lampur, 13th October 2011


Agenda

- mobile telecommunication
- end-user attacks
- network attacks

SecT / TU-Berlin 2 / 45


@ mobile telecommunication

UMTS architecture (complex)

SecT / TU-Berlin 3 / 45

UMTS architecture (simplified)

SecT / TU-Berlin 4 / 45

technology - femtocell context?!

What is a femtocell?

- a small access point
- connects the mobile phone to the 3G/UMTS network
- compatible with every UMTS enabled mobile phone
- small cell, with a coverage of less than 50m
- low power device
- easy to install: you only have to provide power and Internet access
- technical name in 3G: Home Node B (HNB)

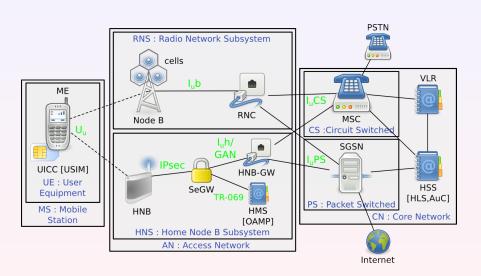
SecT / TU-Berlin 5 / 45

customer advantages

advantages provided to users:

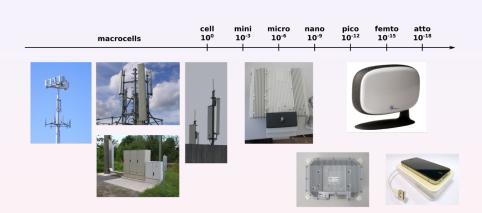
- can be installed at home to improve 3G coverage
- high bandwidth, and high voice quality
- location based services

SecT / TU-Berlin 6 / 45


operator advantages

advantages for mobile operators:

- traffic offload from public operator infrastructure ⇒ reduce expenditure
- cheap hardware compared to expensive 3G equipment
- no installation and maintenance cost
- IP connectivity


SecT / TU-Berlin 7 / 45

Home Node B Subsystem (HNS)

SecT / TU-Berlin 8 / 45

small cells

SecT / TU-Berlin 9 / 45

femtocell threats (as defined by 3GPP)

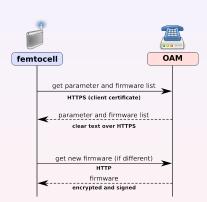
HNB threats listed by the 3GPP

group	#	threat	impact
Compromise of H(e)NB Credentials	1	Compromise of H(e)NB authentication token by a brute force attack via a weak authentication algorithm	harmful
	2	Compromise of H(e)NB authentication token by local physical intrusion	harmful
	4	User cloning the H(e)NB authentication Token. User cloning the H(e)NB authentication Token	very harmful
Physical attacks on a H(e)NB		Inserting valid authentication token into a manipulated H(e)NB	harmful
	6	Booting H(e)NB with fraudulent software ("re-flashing")	up to disastrous
	8	Physical tampering with H(e)NB	harmful
	26	Environmental/side channel attacks against H(e)NB	harmful
Attacks on Radio resources and management	21	Radio resource management tampering	harmful
Protocol attacks on a H(e)NB	5	Man-in-the-middle attacks on H(e)NB first network access	very harmful
	15	Denial of service attacks against H(e)NB	annoying
	17	Compromise of an H(e)NB by exploiting weaknesses of active network services	extremely harmful
	25	Manipulation of external time source	harmful
	27	Attack on OAM and its traffic	very harmful
	28	Threat of H(e)NB network access	harmful

I by the 3GPP					
group	#	threat	impact		
Attacks on the core network, including HeJNB location-based attacks	11	Changing of the H(e)NB location without reporting	harmful		
	12	Software simulation of H(e)NB	very harmfu		
	13	Traffic tunnelling between H(e)NBs	very harmfu		
	14	Misconfiguration of the firewall in the modem/router	annoying		
	16	Denial of service attacks against core network	annoying		
	24	H(e)NB announcing incorrect location to the network	harmful		
User Data and identity privacy attacks	9	Eavesdropping of the other user's UTRAN or E- UTRAN user data	very harmfu		
	10	Masquerade as other users	very harmfu		
	18	User's network ID revealed to Home (e)NodeB owner	breaking users privac		
	22	Masquerade as a valid H(e)NB	very harmfu		
	23	Provide radio access service over a CSG	very harmfu		
Configuration attacks on a H(e)NB	7	Fraudulent software update / configuration changes	extremely harmful		
	19	Mis-configuration of H(e)NB	irritating to harmful		
	20	Mis-configuration of access control list (ACL) or compromise of the access control list	irritating to harmful		

SecT / TU-Berlin 10 / 45

SFR femtocell

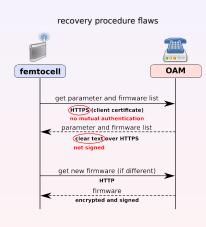

- sold by SFR (2nd biggest operator in France)
- cost: 99€ + mobile phone subscription
- hardware: ARM9 + FPGA for signal processing
- OS: embedded Linux kernel + proprietary services
- built by external vendors (in our case Ubiquisys), configured by operator

SecT / TU-Berlin 11 / 45

recovery procedure

- femtocells provide a recovery procedure
- similar to a factory reset
- new firmware is flashed, and settings are cleared
- used to "repair" the device without any manual intervention

SecT / TU-Berlin 12 / 45


recovery to fail

firmware server is not authenticated

```
| FILLPRODUCTCODE-SPADICTCODE-SPATERORISEFAIL
| OURSEY-Productcode-SPALERODUCTCODE-SPATERORISEFAIL
| OURSEY-Productcode-SPALERODUCTCODE-SPATERORISEFAIL
| OURSEY-Productcode-SPATERORISEFAIL
| OURSEY-PRODUCTCODE-SPATERORISEFAIL-SPATERO
```

 public key is in parameter and firmware list, which is not signed

SecT / TU-Berlin 13 / 45

any attacks hmm?

WHAT NOW?

SecT / TU-Berlin 14 / 45

requirements

- classical approach in GSM: IMSI-Catcher
 - fake operator BTS (MCC/MNC)
 - acts as MitM between operator and victim
 - phone usually can't detect
 - usually used to track and intercept communication
- UMTS standard requires mutual authentication ⇒ GSM approach not working ¹
- no devices acting as UMTS base station + code is available

SecT / TU-Berlin 15 / 45

¹some attacks by using protocol downgrades are known

mutual authentication in the femtocell ecosystem

- in case of femtocell: mutual authentication also provided
 - ⇒ but it's useless ©
- mutual authentication is done with the home operator
- NOT with the actual cell
 - ⇒ the femtocell forwards the authentication tokens
 - ⇒ mutual authentication is performed even with a rogue device

SecT / TU-Berlin 16 / 45

getting the fish into the octopus' tentacles

Howto build a 3G IMSI-Catcher:

- cell configuration is kindly provided as a feature of femtocells
- local cell settings stored in a proprietary database format
- some comfort provided ⇒ web interface

- we can catch any phone user of any operator into using our box
- roaming subscribers are allowed by SFR
- ⇒ the femtocell is turned into a full 3G IMSI-Catcher

SecT / TU-Berlin 17 / 45

intercepting traffic

- proprietary IPsec client + kernel module (xpressVPN)
- multiple ways to decrypt IPsec traffic: NETLINK, ip xfrm state (not available on SFR box)
- we decided to hijack/parse ISAKMP messages passed via sendto(2) glibc wrapper
- voice data encapsulated in unencrypted RTP stream (AMR codec, stream format)

SecT / TU-Berlin 18 / 45

extracting voice

- LD_PRELOAD ipsec user-space program to hijack sendto() and extract keys
- pass key material to host running tcpdump
- decrypt ESP packets
- extract RTP stream (rtpbreak)
- opencore-based (nb) utility to extract AMR and dump to WAV

SecT / TU-Berlin 19 / 45

demo time

DEMONSTRATION

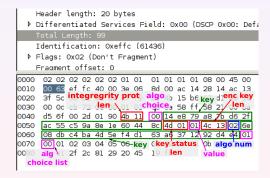
interception

SecT / TU-Berlin 20 / 45

but what about over-the-air encryption?

■ only the phone ⇔ femtocell OTA traffic is encrypted ⇒ encryption/decryption happens on the box

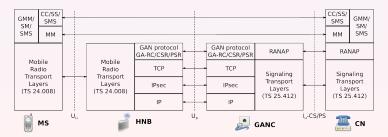
femtocell acts as a combination of RNC and Node-B: receives cipher key and integrity key from the operator for OTA encryption



 reversing tells us: message is SECURITY MODE COMMAND (unspecified RANAP derivate), which includes the keys

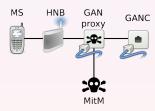
SecT / TU-Berlin 21 / 45

SECURITY MODE COMMAND


derived from RANAP, but spec unknown

SecT / TU-Berlin 22 / 45

femtocell operator communication: the GAN protocol


- device is communicating with operator via GAN protocol (UMA)
 - TCP/IP mapped radio signaling
 - encapsulates radio Layer3 messages (MM/CC) in GAN protocol
 - one TCP connection per subscriber
 - radio signaling maps to GAN messages are sent over this connection
- GAN usage is transparent for the phone

SecT / TU-Berlin 23 / 45

GAN proxy/client

- proxies all GAN connections/messages
- reconfigure femtocell to connect to our proxy instead of real GANC
- proxy differs between GAN message types
- attack client controls GAN proxy over extended GAN protocol

SecT / TU-Berlin 24 / 45

more mitm pls? sms...

- SMS message filtered by GAN proxy
- modified by client
- transfered to real GANC

```
▼ Unlicensed Mobile Access

  Length Indicator: 38
  0000 .... = Skip Indicator: 0
  .... 0001 = Protocol Discriminator: URR (1)
  URR Message Type: GA-CSR UPLINK DIRECT TRANSFER (112)

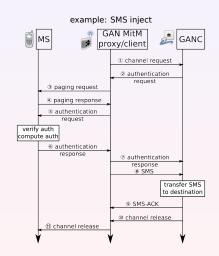
√ L3 Message

   URR Information Element: L3 Message (26)
   URR Information Element length: 34
   .... 1001 = Protocol discriminator: SMS messages (9)
   L3 message contents: 39011f00010007913306091093f013151c0f810094712627...
  GSM A-I/F DTAP - CP-DATA
  GSM A-I/F RP - RP-DATA (MS to Network)
  GSM SMS TPDU (GSM 03.40) SMS-SUBMIT
    0... = TP-RP: TP Reply Path parameter is not set in this SMS SUBMIT/DELIVER
     .0.. .... = TP-UDHI: The TP UD field contains only the short message
     ..0. .... = TP-SRR: A status report is not requested
     ...1 0... = TP-VPF: TP-VP field present - relative format (2)
     .... .1.. = TP-RD: Instruct SC to reject duplicates
     .... ..01 = TP-MTI: SMS-SUBMIT (1)
    TP-MR: 28
   ▶ TP-Destination-Address - (0049176272
   D TP-PID: 0
   ▶ TP-DCS: 0
    TP-Validity-Period: 63 week(s)
    TP-User-Data-Length: (3) depends on Data-Coding-Scheme
   ▼ TP-User-Data
     SMS text: Tdd
```

SecT / TU-Berlin 25 / 45

demo time

DEMONSTRATION


SMS modification

SecT / TU-Berlin 26 / 45

how about impersonating subscribers?

- lets use services for free, billed to a victim
- client requires subscriber information
- proxy additionally caches subscriber info (TMSI/IMSI) for each MS-GANC connection
- phone needed for authentication
- applies to any traffic (SMS,voice,data)
- victim is impersonated

SecT / TU-Berlin 27 / 45

demo time

DEMONSTRATION

SMS injection

SecT / TU-Berlin 28 / 45

return of the IMSI detach

- IMSI detach DoS discovered by Sylvaint Munaut in 2010 ²
 - ⇒ results in discontinued delivery of MT services (call, sms,...)
 - ⇒ network assumes subscriber went offline
- detach message is unauthenticated
- however, this is limited to a geographical area (served by a specific VLR)
- user can not receive calls

SecT / TU-Berlin 29 / 45

²http://security.osmocom.org/trac/ticket/2

imsi detach in femtocell ecosystem

- proximity constraint not existent in femtocell network
- devices reside in various geographical areas
- but all subscribers meet in one back-end system ⇒ and they are all handled by one femtocell VLR (at least for SFR) ②
- we can send IMSI detach payloads via L3 msg in GAN
 - ⇒ we can detach any femtocell subscriber, no proximity needed!

SecT / TU-Berlin 30 / 45

demo time

DEMONSTRATION

IMSI detach

SecT / TU-Berlin 31 / 45

attacking other femtocells

- attack surface limited:
 - network protocols: NTP, DNS spoofing (not tested)
 - services: webserver, TR-069 provisioning (feasible)
- both HTTP. TR-069 is additionally powered by SOAP and XML
- lots of potential parsing fail
- all services run as root

SecT / TU-Berlin 32 / 45

femtocell remote root (CVE-2011-2900)

- we went for the web service (wsal)
- based on shttpd ³/mongoose ⁴/yassl embedded webserver
- we found a stack-based buffer overflow in the processing of HTTP PUT requests
- direct communication between femtocells is not filtered by SFR
- exploit allows us to root any femtocell within the network
- http: //www.sec.t-labs.tu-berlin.de/~nico/wsal_root.py
- fixed in V2.0.24.1 firmware

SecT / TU-Berlin 33 / 45

³http://docs.huihoo.com/shttpd/

⁴http://code.google.com/p/mongoose/

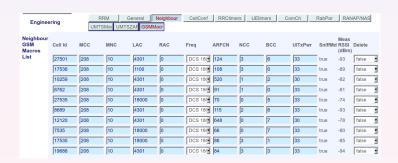
demo time

DEMONSTRATION

remote root

SecT / TU-Berlin 34 / 45

collecting subscribers


- other femtocell are accessible within the network
- website is also accessible
- leaks phone number and IMSI of registered subscriber
- **wink** IMSI detach ⇒ detach whole network

SecT / TU-Berlin 35 / 45

locating subscribers

- location verification performed by OAM
- femtocell scan for neighbour cells

SecT / TU-Berlin 36 / 45

global control

- web-site/database is not read-only
- OAMP, image and GAN server can also be set
- or using root exploit
- traffic can be redirected to our femtocell (either settings or iptables)
- ⇒ any femtocell can be flashed
- ⇒ any femtocell subscriber communication can be intercepted, modified and impersonated

SecT / TU-Berlin 37 / 45

meeting the usual suspects

HNS servers run typical Open Source software, not especially secured, e.g:

- MySQL, SSH, NFS, Apache (with directory indexing), ... available
- FTP used to submit performance measurement reports, including femtocell identity and activity
- all devices share the same FTP account
- vsftpd users are system users, SSH is open :D

SecT / TU-Berlin 38 / 45

advanced access

- SeGW is required to access the network
- authentication is performed via the SIM (removable)
- how about configuring an IPsec client with this SIM?
- ⇒ no hardware and software limitation
- ⇒ no femtocell required anymore
- ⇒ femtocells don't act as a great wall to protect the operator network anymore :D

SecT / TU-Berlin 39 / 45

stairways to heaven

- attacks on operator network
- signaling attacks (not blocked)
- free HLR queries
- leveraging access to:
 - other Access Networks
 - Core Network
- ...

SecT / TU-Berlin 40 / 45

other femtocell research

- THC vodafone http://wiki.thc.org/vodafone, rooted in 2009, unfortunately bug fixed since 2 years
- Samsung femtocell
 http://code.google.com/p/samsung-femtocell/
- clearly shows that this is no single operator problem and might cause some pain
- femtocell architecture is defective by design, security wise

SecT / TU-Berlin 41 / 45

thanks (in no particular order)

- Jean-Pierre Seifert
- Collin Mulliner
- Benjamin Michéle
- Dieter Spaar
- K2

SecT / TU-Berlin 42 / 45

the end

thank you for your attention questions?

SecT / TU-Berlin 43 / 45

contact us

- Nico Golde <nico@sec.t-labs.tu-berlin.de> @iamnion
- Kévin Redon < kredon@sec.t-labs.tu-berlin.de>
- Ravi Borgaonkar <ravii@sec.t-labs.tu-berlin.de> @raviborgaonkar
- or just femtocell@sec.t-labs.tu-berlin.de
- Finally all material from this talk (including tools) will be available one week after the HITB KL at: http://tinyurl.com/sectfemtocellhacks

SecT / TU-Berlin 44 / 45

extended coverage

- femtocells have a small coverage (by definition, 25-50m)
- signal range can be increased using amplifier and external antenna

SecT / TU-Berlin 45 / 45