
SSRF pwns: new
techniques and stories

@ONsec_lab: http://lab.onsec.ru

Alexander Golovko
Vladimir Vorontsov

SSRF pwns: new
techniques and stories

@ONsec_lab: http://lab.onsec.ru

Alexander Golovko
Vladimir Vorontsov

About us
ONsec - web application security company
founders since 2009
Alexander - network security expert, Debian
GNU/Linux maintainer
Vladimir - webapp security expert, bughunter
@ONsec_lab - webapp security research
Twi+Blog: http://lab.onsec.ru [ENG]
Awarded by Google, Yandex, bla-bla-bla
Wants to create yet another Web App Firewall
;)

About SSRF
First described in 2008, Deral Heiland http://goo.gl/Q5ZDh
Reincarnated for XXE during Yandex's Month of SecBugs
(end of 2011), @ONsec_lab: http://goo.gl/9OXfu
Exploited SAP through gopher in 2012, BH-US: http://goo.
gl/Lt4pr, ERPScan - A.Polyakov, D.Chastukhin
Re-discovered as XSPA by Riyaz Walikar (2012, Nov):
http://goo.gl/IsCAz
Exploited memcached, fastcgi, etc: http://goo.gl/D8UCd
Top Ten Web Hacking Techniques of 2012 2nd place:
http://goo.gl/XUWS8 "Pwning via SSRF (memcached, php-
fastcgi, etc)"
CWE-918: http://cwe.mitre.org/data/definitions/918.html

About SSRF
What is Server-Side Request Forgery?
"SSRF bible. Chetsheet": http://goo.gl/oRMhg
CWE-918 not so correct:
The web server receives a URL or similar
request from an upstream component and
retrieves the contents of this URL...
Not only web-servers, not only URL
fputs($f,"GET /index.php?username={$_POST['login']}
HTTP/1.1\r\nHost: $host\r\n\r\n");//CRLF injection

Before we start
SSRF for bypass host-based auth
SSRF for bypass firewalls
SSRF for bla-bla-bla

But is there any other ways to do the
same?

Hello from early 90th!
Packets forwards between interfaces
By default in Debian/RedHat
UDP packet can be easily sent from
Internet, classic spoofing (DDoS way)

Can exploit your SNMP, memcached,
others UDP+host-based auth servers
Use sysctl net.ipv4.conf.<all>.rp_filter

Advanced UDP spoofing
exploitation
Exploit services as SSRF where
response is request to another service
Ping-pong SSRF,spoofing based SSRF

Firewalls bypass in deep network by
chaining requests, no restrictions more!

Reflection SSRF attack
● Spoofing attack where service

response used as a request for
another service - Server-Side
Request Forgery

● In spoofed packet attacker set source
IP/port from victim

● Memcached easy to be exploited
● Echo service is ideal for this purpose

Reflection SSRF attack

Host A
Service A

Host B
Service B

Fi
re

w
al

l

Spoofed packet,
source address:
Host B

Response for
spoofed packet

Impossible

"Ping-pong" effect (UDP)

Host A
memcached

Host B
memcached

Fi
re

w
al

l

Spoofed packet,
source address:
Host B
get key

0x01 ...
VALUE key
stats

Spoofed packet:
set key 1 3600 5
stats

1

2

3

0x01 ...
ERROR
STAT PID ..
...

4

5

...
infinite
loops
...

By default memcached
listened at :11211
TCP and UDP both!

"Ping-pong" effect (UDP)
exploit
sudo packit -t udp -s 10.3.0.5 -
d 10.3.0.4 -S 11211 -D 11211 -
p '0x 01 01 00 00 00 01 00 00
67 65 74 20 61 61 61 0d 0a'

Ping-pong infinite loops
ERROR
ERROR
...

Request for "aaa" key value
Value of "aaa" is "version"

Execute commands:
"VALUE aaa 0 14", than
"version"
Results: "ERROR" and
"VERSION 1.4"

Hello from 2012!
TCP Fast Open (since
kernel 3.6)
Provide SYN+data packets
Required Cookie
Cookie = AES(key,ClientIP)
Key have 16 bytes length
One key for all clients
UNBRUTABLE :(((
waits for others TFO impl-s

TCP Fast Open
By design security
limitations:
One cookie for a one client,
ports are not restricted
One secret key for a server,
for all clients AES(key,IP)

Hello from 2012!
IPv6 configuration issues for
SSRF!
1. Bypass simple filters by ::1

http://::1/server-status ;)
2. Link-local firewalls bypass
3. Exploiting autoconf IPv6

TCP Fast Open attack
concept in clouds

Host BHost A

TFO cookie for
IP 10.3.13.37

1IP 10.3.13.37

TFO SYN with
cookie request

Host B

Host
A

IP 10.3.13.37

TFO SYN+data+old
cookie for IP
10.3.13.37 spoofing
Host C

Host
C

IP 10.3.13.38

Timestamp A

2 Timestamp B>A

IPv6 link-local addresses

Host B
Service B

Listen *:80Fi
re

w
al

l

Host A
(already
hacked)

No firewall
rules for link-
local IPv6
address

Firewall block1

2 Link-local address
can be
- sniffed (root
required)
- calculated by MAC:
http://ben.akrin.com/?
p=1347 (not for MS
networks, http://goo.
gl/tGLqy)

Hosts A and B are in one network segment

IPv6 Router Advertisement

Host B
Service B

Listen *:80Fi
re

w
al

l

Host A
(already
rooted)

No firewall
rules for new
IPv6
address

Firewall
blocked :80

RA packet
with new IPv6
address

1

2

3 IPv6 autoconf is
enabled by default in
Debian/RHel

To disable use sysctl
net.ipv6.conf.*.
autoconf

Hosts A and B are in one network segment

What's the
conclusion?

Host-based auth must die!

Now we start
SSRF and protocol schemas: gopher://
dict:// ldap:// pop3:// file:// bla-bla-bla -
nothing new?

SSRF not only in webapp code now, i.
e. "ping-pong" attack and UDP
memcached example of it

Protocol schemas
Different protocols = different actions
Not only sending data, but data leak
also

See "SSRF bible. Cheatsheet":
Exploitation->Original request data
sniffing (http://goo.gl/oRMhg)

Protocol schemas
telnet:// protocol schema
● read data from stdin
● write data to stdout
what are stdin/stdout for your
webapp?
For CGI - HTTP request/response
For mod_php, FCGI - /dev/null ;(
CGI is still for Enterprise webapps ;)

Which server is the most
secure in your
environment?

VPN? Other SSL server?

SSL -> PKI -> SSRF !!!

Client certificate ----->
OCSP/TSP/CRL URIs ------>
OCSP/TSP/CRL requests

SSRF on PKI
Public Key Infrastructure
Client certificate validation
External resources defined in
certificate, such as CRL, OCSP, TSP
urls
Certificate validation logic is different by
implementations

Different implementations
● Check CRL/OCSP url from config,

not from user certificate (nginx)
● Check trust relationship before

certificate status
● Check certificate status before trust

relationship (CA, intermediate)
● Check intermediate/CA certificate

status before trust relationship

Different implementations
Parse certificate

Is cert self-signed?

Verify certificate
status

Verify ...

Parse certificate

CA (intermediate)
validation process

Verify CA
(intermediate CA)
status

Verify ...

Parse certificate

Verify trust
relationship
(CA/intermediate/cli
ent certificate)

Verify ...

SSRF!!!

SSL->PKI->SSRF

CRL: dict://hostB:11211/1stats
OCSP: dict://hostB:11211/1stats
TSP: dict://hostB:11211/1stats

Host A
SSL (https,
VPN, etc) Fi
re

w
al

l

Host B
memcache

*:11211

SSRF practice. Yandex

Something interesting?
● Exploited memcached through SSRF
● Discovered few intranet services
● Discovered infrastructure bugs
● Got fun and skills
● Shocked yandex security team :)

SSRF practice. Yandex

11 SSRF bugs accepted
7 XXE + SSRF bugs accepted
~ $12900 total reward
~ $760 per bug ($1000 max award by
program)

Nice SSRF using DNS ;)
● Webmaster service provides content

receiving of YOUR sites
● Validation process based on

files/DNS
● Verification by DOMAIN, not by IP
● Attack vector: verify domain, than

change A-record to Yandex's intranet
● Profit!

Nice SSRF using DNS ;)

Intranet content ;)

● Intranet scan using SSRF is not
ethical

● Using Google to find Yandex's
intranet hosts is so ethical ;)

● Exploitation of SSRF to retrieve
sentences data is not ethical

● Impact must be demonstrated to bug
reviewers

Yandex SSRF discovery

Using Google to hack
Yandex ;)
Googled config with IP and domain:

???
@ONsec_Lab
http://lab.ONsec.ru

