OAuth 2.0 and the Road to XSS:
attacking Facebook Platform

Andrey Labunets — @isciurus

Who Is @isciurus

Security researcher, occasional reverse-engineer
Student at the Tyumen State University

Frequent guest to Facebook vulnerability submission form

OAuth

- An open framework for web authorization

authorizes to access owner’s data on

Password never given to a client

« Known attacks on OAuth variations

Facebook JS SDK bugs by K. Bhargavan, C. Bansal in 2012
Flash bug on Facebook by R. Wang, S. Chen, L. Xing, X. Wang in 2012

- Fundamental problems

Session fixation for OAuth 1.0 in 2009
Bearer tokens for OAuth 2.0

OAuth 2.0 in 60 seconds

Resource Resource
Owner Owner

A B

' | A. Client Identifier E ' | A. Client Identifier
& Redirection URI : & Redirection URI
B. User Authenticates . i | User- | B.uUser Authenticates | Authorization
Authorization ' | | Agent Server
. rver - o
C. Redirection URI Serve ! C. Authorization Code
User- | with Access Token i
Agent | in Fragment PN
] A C
D. Redirection URI I N
Without Fragment Web-Hosted ! .
Client : D. Authorization Code
E. Script Resource] & Redirection URI
— i Client
A | G. Access Token ! E. Access Token
! (w/ Optional Refresh Token)
=
PN/

Implicit Grant Flow Authorization Code Flow

OAuth 2.0 Case Study: Facebook Platform

Motivation:

OAuth 2.0 — proposed RFC standard
Facebook — largest platform for web-developers (1b users, 9m apps)

Poorly explored, huge attack surface

Assumptions and threat model

- Avictim has an account on Facebook, and he uses some apps

« An attacker is able create a malicious web site and a malicious
Facebook app

- An attacker can convince a victim to click a specially crafted
malicious link

- Attacker wants to:

Access victim’s private data
Invoke some actions on behalf of a victim

Sign into his account on a third-party web site (authentication bypass)

Execute its code on facebook.com client-side (XSS)

Legacy authorization flow

Legacy authorization flow

- extern/login_status.php returns token in query string

- Exploitation:
Insert a picture from your server somewhere inside the Client site
Tamper to point this page

Let the user click the link

« Resource owner’s access token leaked via HTTP Referrer

Legacy authorization flow

http://facebook.com/extern/login_status.php?api_key=111239619098&0k_session=

HTTP 302

rces u Network

r1

Legacy authorization flow

Lots of external developers depend on this flow, not easy to patch
Still works for some apps (bing, etc)
Impact:

Access token stealing

Lessons:

Design it carefully

If not, don’t mix legacy/latest auth flows

Javascript SDK issues

Normal JS SDK workflow

O O R S S EEE S B S S S RS S S B S B S M S S B S R B M B e e gy,

postMessage()

|
I
I
I
I
I
I
I
I
I
[.
1 Facebook proxy iframe
I
I
I
I
I
I
I
|

proxyMessage()
|

'\ xd_arbiter.php? #...0rigin=)

— o O . O O S B S S B S S B S S B B S B Eas

\ version=18 client.com

e e o o o e o e e e e o e e e o = =

11

Flaw in JS SDK proxy

O O R S S EEE S B S S S RS S S B S B S M S S B S R B M B e e gy,

postMessage()

|
|
|
|
|
|
|
|
|
|
4 .
1 Facebook proxy iframe
|
|
|
|
|
|
|
|

proxyMessage()
|

'\ xd_arbiter.php#...origin=)

— o O . O O S B S S B S S B S S B B S B Eas

12

Flaw in JS SDK proxy

- Exploited by setting to an old-versioned xd_proxy
without origin checks

- Impact:
Code, access token, signed_request stealing

- Lessons:

If this is out of specs, implement in twice carefully

- Suggestion:

Make JS SDK xd_arbiter open-source

13

URL fragment tricks

Hash-bang (#!) + Referrer exploitation

- Facebook QuicklingPrelude (or hash-bang feature):

Fills with value from
Redirect: [#/ —_>

Abused to pull sensitive data from URL fragment

- Generic idea of all hash-bang + Referrer exploits:

Redirect to a permitted page at facebook.com
Pull access token from fragment and redirect to another facebook page
Redirect to your own domain

Pick the Referrer from the request and extract the token

15

App RPC getHash trick

Facebook app controller implemented a special method
(possibly, for app navigation or parameter passing)

. could be disclosed to a malicious app iframe

No need to authorize the malicious app

Exploitation:

Utilize hash-bang feature to bypass filters on
Redirect to your app canvas page
Invoke call from your app

Get a full URL fragment with access token

16

App RPC getHash trick

/
- Facebook.com

3.p : xyMessage(“FB_RPC.:...result:"access_token=AAA...",...)

7

Appcom Canvas iframe 1. postMessage(“FB_RPC...method:getHash...”,..)

4. postMessage(“FB_RPC:...result:"access_token=AAA...”,...)

S s s s e S S S S S B S S S S S S S S S S S S S S e e e e e e e e e e

\

————————————————————’

17

URL fragment tricks

Fragment-based navigation is an excellent vector for OAuth 2.0

- Impact:
code, access token, signed_request stealing

« Lessons:

Avoid navigation with URL fragment on your authorization endpoint domain
If not, deny any containing URL fragment

If not, think twice how you integrate your fragment navigation with OAuth 2.0

18

PHP SDK issues

PHP SDK issues

- OAuth 2.0: stealing code via tampering gives nothing

- Facebook JS/PHP SDK: code is issued with an empty

src/base facebook.php#1.426

protected function () A

// the JS SDK puts a code in with the

if (array key exists('code', S$signed request)) {
$code = $signed request['code'l];
$access token = Sthis-> (Scode,) ;

. tampering-based attacks are invisible

PHP SDK issues

signed_request takes priority over code-based authentication:

src/base facebook.php#1.525

protected function () |
// 1if a signed request is supplied, then
// .
$signed request = Sthis->getSignedRequest () ;
if ($signed request) {
if (array key exists('user id', $signed request)) {

signed_request parsed also from $ REQUEST, no CSRF checks:

src/base facebook.php#L.489

public function () {
if (!$this->signedRequest) {

{
Sthis->signedRequest = $this->parseSignedRequest (

) ;

21

PHP SDK issues

- PHP SDK compromises OAuth 2.0 authorization code grant flow
- 1 Still not patched

- Impact:
(from code grant to signed_request -based flow)
(CSRF) with signed_request

redirect_uri tampering and stolen signed_request means

« Lessons:

Facebook PHP SDK is not for secure authentication

Don’t trust code from external SDK

22

RPC issues

Facebook RPC showDialog workflow

App communicate with Facebook RPC controller through
messages

App can invoke a special RPC method

To render the dialog, Facebook controller makes an XHR
request and parses the JSON payload

XHR endpoint also serves as OAuth 2.0 endpoint

We control most of query parameters for uiserver.php ()

24

Facebook RPC showDialog workflow

uiserver.php 4. XHR handler

Facebook.com
2. XdArbiter.handleMessage()

app.com canvas iframe
1. postMessage() / Flash

3. XHR

o e e e e M e e oy,

25

Facebook RPC showDialog workflow

Guess, how is JSON payload parsed?

26

Facebook RPC showDialog workflow

We could trick the Facebook app controller with OAuth 2.0 redirects
and submit malicious payload to the XHR handler:

. function (ka) | Disabled by default
var la;
if (this.getOption ('suppressEvaluation')) {
la = {asyncResponse: new h(this, ka)}; Removes the first 9 bytes
} else {
var = , na = null;
try Yes, just eval
var = (ma) ;
try {

XHR cross-domain redirects are not permitted, but let's knock it down
up to cross-site scripting anyway

27

Yet another JS SDK issue: Flash XD transport

. parameter of method must belong to app’s
own domain, which is defined in xd_arbiter proxy url

- Two flaws in Flash cross-domain transport allowed to hijack the
origin and to send FB_RPC messages on behalf of facebook.com:

Controllable Flash channel names

Absense of secret nonce validation

- Exploitation:

Inject two xd_arbiter proxies with transport=flash
Connect them by setting the same Flash channel name

Inject the third xd_arbiter and let him initiate the flow with proxyMessage()

28

Yet another JS SDK issue: Flash XD transport

/

O O S B B B B B S S S e B e e B e .

-

O S R RS S EEE S RS S S S S B S EEE S SEe B S R S S B S R e R e e gy,

another nonce check here is missing

—_—_— e —— g

------------------------- .

| .

* Adobe LocalConnection() I

' channel names are I
|
|
|

I -
: by xd_arbiter url

: Facebook proxy iframe

proxyMessage()

——————————’

| |
- Secret nonce validation — , : \
| |
| |
| |

29

XSS with OAuth 2.0

- Now we send FB_RPC message on behalf of
facebook.com and invoke showDialog method

. parameter in FB_RPC message is

http./facebook.com/...something, and it passes
all checks

- Wrapping a small stage-0 malicious payload
Inside a picture

- Proxying the picture from our site through
facebook.com/safe image.php

cuts the prefix

=window;if(!'¥.kE
1{Y¥.k5=1; [Y.addE
ventlListener| | Y.
attachEvent) ['me

sage' ,functioni

alfevalilb.c

o L L HRefdt e
wal (ma.substr (14
L1021 ,9)//LERT !

@I +Iirnd
G321 AEET TEK
5 '.II '.II]]] Y .o

30

XSS with OAuth 2.0

3. redirect_uri = gif I

(- T \I 1. proxyMessage() :
: FB proxy iframe ,
. ‘\ N e e e e ——————) /I
\ S e _7
\\

s e o o o e e o o o e e D S e e e e o

31

XSS with OAuth 2.0

« Lessons:

XSS is not only about , design flaws are unique
eval is still evil, nothing new

OAuth redirects can be abused for taint propagation in your javascript apps

32

Conclusion

Endless attack vectors for Facebook OAuth

tampering
Sensitive data leakage through
(JS SDK and xd_arbiter.php)
(hash-bang) and redirect_uri filtering bypasses

(PHP SDK, ... SDK)

- App

34

Endless attack vectors for Facebook OAuth

tampering
Sensitive data leakage through
(hash-bang) and redirect_uri filtering bypasses
(JS SDK and xd_arbiter.php)
(PHP SDK, ... SDK)

App exploiting

35

Q&A

Thanks!

36

