

Practical Attacks Against Encrypted VoIP Communications

HITBSECCONF2013: Malaysia

Shaun Colley & Dominic Chell

Agenda

- This is a talk about traffic analysis and pattern matching
- VoIP background
- NLP techniques
- Statistical modeling
- Case studies aka "the cool stuff"

Introduction

- VoIP is a popular replacement for traditional copper-wire telephone systems
- Bandwidth efficient and low cost
- Privacy has become an increasing concern
- Generally accepted that encryption should be used for end-to-end security
- But even if it's encrypted, is it secure?

Why?

- Widespread accusations of wiretapping
- Leaked documents allegedly claim NSA & GCHQ have some "capability" against encrypted VoIP
- "The fact that GCHQ or a 2nd Party partner has a capability against a specific the encrypted used in a class or type of network communications technology. For example, VPNs, IPSec, TLS/SSL, HTTPS, SSH, encrypted chat, encrypted VoIP".

Previous Work

- Little work has been done by the security community
- Some interesting academic research
 - Uncovering Spoken Phrases in Encrypted Voice over IP
 Communications: Wright, Ballard, Coull, Monrose, Masson
 - Uncovering Spoken Phrases in Encrypted VoIP
 Conversations: Doychev, Feld, Eckhardt, Neumann
- Not widely publicised
- No proof of concepts

Background: VoIP

VolP Communications

- Similar to traditional digital telephony, VoIP involves signalling, session initialisation and setup as well as encoding of the voice signal
- Separated in to two channels that perform these actions:
 - Control channel
 - Data channel

Control Channel

- Operates at the application-layer
- Handles call setup, termination and other essential aspects of the call
- Uses a signalling protocol such as:
 - Session Initiation Protocol (SIP)
 - Extensible Messaging and Presence Protocol (XMPP)
 - -H.323
 - Skype

Control Channel

- Handles sensitive call data such as source and destination endpoints, and can be used for modifying existing calls
- Typically protected with encryption, for example SIPS which adds TLS
- Often used to establish the the direct data connection for the voice traffic in the data channel

Data Channels

- The primary focus of our research
- Used to transmit encoded and compressed voice data
- Typically over UDP
- Voice data is transported using a transport protocol such as RTP

Data Channels

- Commonplace for VoIP implementations to encrypt the data flow for confidentiality
- A common implementation is Secure Real-Time Transport Protocol (SRTP)
- By default will preserve the original RTP payload size
- "None of the pre-defined encryption transforms uses any padding; for these, the RTP and SRTP payload sizes match exactly."

Background: Codecs

Codecs

- Used to convert the analogue voice signal in to a digitally encoded and compressed representation
- Codecs strike a balance between bandwidth limitations and voice quality
- We're mostly interested in Variable Bit Rate (VBR) codecs

Variable Bitrate Codecs

- The codec can dynamically modify the bitrate of the transmitted stream
- Codecs like Speex will encode sounds at different bitrates
- For example, fricatives may be encoded at lower bitrates than vowels

Variable Bitrate Codecs

 The primary benefit from VBR is a significantly better quality-to-bandwidth ratio compared to CBR

- Desirable in low bandwidth environments
 - Cellular
 - Slow WiFi

Background: NLP and Statistical Analysis

Natural Language Processing

- Research techniques borrowed from NLP and bioinformatics
- Primarily the use of:
 - Profile Hidden Markov Models
 - Dynamic Time Warping

- Statistical model that assigns probabilities to sequences of symbols
- Transitions from Begin state (B) to End state
 (E)
- Moves from state to state randomly but in line with transition distributions
- Transitions occur independently of any previous choices

- The model will continue to move between states and output symbols until the *End* state is reached
- The emitted symbols constitute the sequence

- A number of possible state paths from B to E
- Best path is the most likely path
- The Viterbi algorithm can be used to discover the most probable path
- Viterbi, Forward and Backward algorithms can all be used to determine probability that a model produced an output sequence

- The model can be "trained" by a collection of output sequences
- The Baum-Welch algorithm can be used to determine probability of a sequence based on previous sequences
- In the context of our research, packet lengths can be used as the sequences

Profile Hidden Markov Models

- A variation of HMM
- Introduces Insert and Deletes
- Allows the model to identify sequences with Inserts or Deletes
- Particularly relevant to analysis of audio codecs where identical utterances of the same phrase by the same speaker are unlikely to have identical patterns

Profile Hidden Markov Models

Consider a model trained to recognise:

ABCD

 The model can still recognise patterns with insertion:

ABXCD

Or patterns with *deletion*:

A B C

Dynamic Time Warping

- Largely replaced by HMMs
- Measures similarity in sequences that vary in time or speed
- Commonly used in speech recognition
- Useful in our research because of the temporal element
- A packet capture is essentially a time series

Dynamic Time Warping

 Computes a 'distance' between two time series – DTW distance

Different to Euclidean distance

 The DTW distance can be used as a metric for 'closeness' between the two time series

Dynamic Time Warping - Example

- Consider the following sequences:
 - -00047142623832000000000000000000000
 - -000000000000000005613252494200000
- Initial analysis suggests they are very different, if comparing from the entry points.
- However there are some similar characteristics:
 - Similar shape
 - Peaks at around 25

Could represent the same sequence, but at different time

offsets?

- Usually connections are peer-to-peer
- We assume that encrypted VoIP traffic can be captured:
 - Man-in-the-middle
 - Passive monitoring
- Not beyond the realms of possibility:
 - "GCHQ taps fibre-optic cables"
 http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
 - "China hijacked Internet traffic"
 http://www.zdnet.com/china-hijacked-uk-internet-traffic-says-mcafee-3040090910/

• But what can we get from just a packet capture?

Capture?

Capture Analyze Statistics Telephony Tools Help

```
<u>File Edit View Go Capture Analyze Statistics Telephony Tools Help</u>
       (ip.addr eq 192.168.1.64 and ip.dst eq 192.168 ▼ Expression... Clear Apply
                                                                                Protocol Info
                         Source
                                                    Destination
                         192.168.1.64
                                                    192.168.1.77
      435 3.958823
                                                                               UDP
                                                                                         Source port: 29733 Destination port: 10885
     436 3.982114
      438 4.005131
                        192.168.1.64
                                                    192.168.1.77
                                                                                         Source port: 29733 Destination port: 10885
      440 4.016901
                        192,168,1,64
                                                    192.168.1.77
                                                                               UDP
                                                                                                             Destination port: 10885
      442 4.039957
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
                                                                                                             Destination port: 10885
                                                                                         Source port: 29733
      445 4.063262
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
      448 4.086424
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
      449 4.097977
                         192.168.1.64
                                                    192.168.1.77
                                                                               UDP
      451 4.121421
                        192,168,1,64
                                                    192.168.1.77
                                                                               UDP
                                                                                         Source port: 29733
                                                                                                             Destination port: 10885
      453 4.144586
                         192.168.1.64
                                                                               UDP
                                                    192.168.1.77
                                                                                                             Destination port: 10885
      455 4.155962
                        192.168.1.64
                                                    192.168.1.77
                                                                                                             Destination port: 10885
      456 4.167239
                         192.168.1.64
                                                    192.168.1.77
                                                                               UDP
      458 4.179136
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
                                                                                                             Destination port: 10885
                                                                                         Source port: 29733
      460 4.202413
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
                                                                                                             Destination port: 10885
      463 4.225577
                        192.168.1.64
                                                    192.168.1.77
                                                                               UDP
                                                                               UDP
      465 4.237242
                         192.168.1.64
                                                    192.168.1.77
                                                                               UDP
      467 4.260390
                        192.168.1.64
                                                    192.168.1.77
                                                                                         Source port: 29733
                                                                                                             Destination port: 10885
      469 4.283726
                         192.168.1.64
                                                    192.168.1.77
                                                                               LIDP
                                                                                                             Destination port: 10885
D Frame 436: 105 bytes on wire (840 bits), 105 bytes captured (840 bits)
D Ethernet II, Src: b8:f6:b1:17:a0:97 (b8:f6:b1:17:a0:97), Dst: 40:b0:fa:be:e3:6e (40:b0:fa:be:e3:6e)
▶ Internet Protocol, Src: 192.168.1.64 (192.168.1.64), Dst: 192.168.1.77 (192.168.1.77)
Duser Datagram Protocol, Src Port: 29733 (29733), Dst Port: 10885 (10885)
Data (63 bytes)
```


- Source and Destination endpoints
 - Educated guess at language being spoken

Packet lengths

Timestamps

○ ○ ○ 🛛 Packet Lengths with filter: (ip.addr eq 19			
Topic / Item	Count	Rate (ms)	Percent
→ Packet Lengths	249	0.052311	
0-19	0	0.000000	0.00%
20-39	0	0.000000	0.00%
40-79	1	0.000210	0.40%
80-159	241	0.050630	96.79%
160-319	7	0.001471	2.81%
320-639	0	0.000000	0.00%
640-1279	0	0.000000	0.00%
1280-2559	0	0.000000	0.00%
2560-5119	0	0.000000	0.00%
5120-	0	0.000000	0.00%
 <u>C</u> lose			

• So what?.....

 We now know VBR codecs encode different sounds at variable bit rates

 We now know some VoIP implementations use a length preserving cipher to encrypt voice data

Variable Bit Rate Codec

+

Length Preserving Cipher =

Case Study

Skype Case Study

- Connections are peer-to-peer
- Uses the Opus codec (RFC 6716):
 - "Opus is more efficient when operating with variable bitrate (VBR) which is the default"
- Skype uses AES encryption in integer counter mode
- The resulting packets are not padded up to size boundaries

Skype Case Study

Skype Case Study

- Although similar phrases will produce a similar pattern, they won't be identical:
 - Background noise
 - Accents
 - Speed at which they're spoken

Simple substring matching won't work!

Skype Case Study

- The two approaches we chose make use of the NLP techniques:
 - Profile Hidden Markov Models
 - Dynamic Time Warping

Skype Case Study

- Both approaches are similar and can be broken down in the following steps:
 - Train the model for the target phrase
 - Capture the Skype traffic
 - "Ask" the model if it's likely to contain the target phrase

Skype Case Study - Training

• To "train" the model, a lot of test data is required

We used the TIMIT Corpus data

 Recordings of 630 speakers of eight major dialects of American English

 Each speaker reads a number of "phonetically rich" sentences

Skype Case Study - TIMIT

"Why do we need bigger and better bombs?"

Free Photoshop PSD file download - Resolution 1280x1024 px - www.psdgraphics.com

Skype Case Study - TIMIT

"He ripped down the cellophane carefully, and laid three dogs on the tin foil."

Skype Case Study - TIMIT

"That worm a murderer?"

Skype Case Study - Training

 To collect the data we played each of the phrases over a Skype session and logged the packets using tcpdump

```
for((a=0;a<400;a++)); do /
Applications/VLC.app/Contents/MacOS/
VLC --no-repeat -I rc --play-and-exit
$a.rif ; echo "$a " ; sleep 5 ; done</pre>
```


Skype Case Study - Training

 PCAP file containing ~400 occurrences of the same spoken phrase

"Silence" must be parsed out and removed

 Fairly easy - generally, silence observed to be less than 80 bytes

Unknown spikes to ~100 during silence phases

Skype Case Study - Silence

Short excerpt of Skype traffic of the same recording captured 3 times, each separated by 5 seconds of silence:

Skype Case Study - Silence

Approach to identify and remove the silence:

- Find sequences of packets below the silence threshold, ~80 bytes
- Ignore spikes when we're in a silence phase (i.e. 20 continuous packets below the silence threshold)
- Delete the silence phase
- Insert a marker to separate the speech phases – integer 222, in our case
- This leaves us with just the speech phases.....

Skype Case Study - Silence

Skype Case Study – PHMM Attack

- Biojava provides a useful open source framework
 - Classes for Profile HMM modeling
 - BaumWelch for training
 - A dynamic matrix programming class (DP) for calling into
 Viterbi for sequence analysis on the PHMM

We chose this library to implement our attack

Skype Case Study – PHMM Attack

- Train the ProfileHMM object using the Baum Welch
- Query Viterbi to calculate a log-odds
- Compare the log-odds score to a threshold
- If above threshold we have a possible match
- If not, the packet sequence was probably not the target phrase

Skype Case Study – DTW Attack

- Same training data as PHMM
- Remove silence phases
- Take a prototypical sequence and calculate DTW distance of all training data from it
- Determine a typical distance threshold
- Calculate DTW distance for test sequence and compare to threshold
- If the distance is within the threshold then likely match

PHMM Demonstration

Skype Case Study – Pre Testing

Skype Case Study – Post Testing

Cypher: "I don't even see the code. All I see is blonde, brunette, red-head"

PHMM Statistics

- Recall rate of approximately 80%
- False positive rate of approximately 20%
- Phonetically richer phrases will yield lower false positives
- TIMIT corpus: "Young children should avoid exposure to contagious diseases"

DTW Results

Similarly to PHMM results, ~80% recall rate

 False positive rate of 20% and under – again, as long as your training data is good.

Silent Circle - Results

 Not vulnerable – all data payload lengths are 176 bytes in length!

Wrapping up

Prevention

Some guidance in RFC656216

Padding the RTP payload can provide a reduction in information leakage

Constant bitrate codecs should be negotiated during session initiation

Further work

- Assess other implementations
 - Google Talk
 - Microsoft Lync
 - Avaya VoIP phones
 - Cisco VoIP phones
 - Apple FaceTime
 - According to Wikipedia, uses RTP and SRTP...Vulnerable?
- Improvements to the algorithms Apply the Kalman filter?

Conclusions

- Variable bitrate codecs are unsafe for sensitive VoIP transmission
- It is possible to deduce spoken conversations in encrypted VoIP
- VBR with length preserving encrypted transports like SRTP should be avoided
- Constant bitrate codecs should be used where possible

@domchell @MDSecLabs

