RFIDler
a Software Defined RFID tool

Adam Laurie
(Zac Franken)
Who are we?

- Aperture labs: www.aperturelabs.com
Dear Aperture Laboratories

Do you make Portal Guns?
Do they work?
Well I have a idea for a portal Gun, here is the picture.

The portal colors are yellow and rainbow.

From Joshua.
Who are we?

• Zac Franken
• Chip Monkey
• Scary Chemicals
• Bad Smells
Who are we?

• Adam Laurie

• Code Monkey

• Convert scary analogue Magic Moonbeams to lovely Digital Bits & Bytes
What?

• RFIDler
 • Software Defined RFID
Why?

• Many systems totally insecure
 • Manufacturers know it
• Existing tools expensive / complicated
 • Proxmark3
 • Very good but 'fragile' & expensive
• Vendor specific dev kits
 • Locked in to one tag type
• Disrupt the market
 • Change threat landscape
Why?

• RFID is confusing
 • Proliferation of standards
 • Proprietary systems
 • Analogue
 • Inductive Coupling / NFC
 • Magic Moonbeams
 • Digital only after **ALL** decoding/demodulation
Software Defined Radio

• RF front-end in hardware
• Everything else in software
 • Modulation
 • Filtering
 • Mixing
 • etc.
Software Defined Radio

• FUNcube Dongle
 • 150 kHz -> 1.9GHz
Software Defined Radio

- GNU Radio Companion
 - Works with any supported hardware
 - Creates python code to drive GNU Radio

![Diagram of GNU Radio Companion](image-url)
Software Defined Radio

- Raw data capture
- Saved as WAV file
Software Defined Radio

• Raw data
 • AM - Amplitude Modulation
 • OOK – On / Off Keying
Software Defined Radio

- GNU Radio Companion
 - Pre-defined modulators / de-modulators
 - AM
Software Defined Radio

- AM data capture
- Saved as WAV file
Software Defined Radio

- AM data capture
- Convert to square wave
Software Defined Radio

• Decode to binary
 • HIGH is 1
 • LOW is 0
 • Smallest pulse is single bit length
 • 10110010010010010010010110110110
 110010
RFID Basics

• TAG and READER are inductively coupled
• READER generates CARRIER (in this case 125KHz) to energise TAG
• TAG takes power from its coil
RFID Basics

• TAG communicates to READER by grounding its coil, thereby inducing a voltage drop in the inductively coupled READER coil
RFID Basics

• Reader communicates to TAG by interrupting the CARRIER
RFID Basics

• Modulation:
 • ASK – Amplitude Shift Keying
 – OOK – On / Off Keying
RFID Basics

• Modulation:
 • ASK – Amplitude Shift Keying
 – OOK – On / Off Keying
 • READER ENERGISING coil
 – 'ON'
 – or not 'OFF'
RFID Basics

• Modulation:
 • ASK – Amplitude Shift Keying
 – OOK – On / Off Keying
 • READER ENERGISING coil
 – 'ON'
 – or not 'OFF'
 • TAG GROUNDING coil
 – 'ON'
 – or not 'OFF' (DAMPING)
RFID Basics

• Modulation schemes
 • ASK – Amplitude Shift Keying
 – OOK – On / Off Keying
RFID Basics

- Modulation schemes
 - ASK – Amplitude Shift Keying
 - OOK – On / Off Keying
 - That's all she wrote!
RFID Basics

• Modulation schemes
 • ASK – Amplitude Shift Keying
 – OOK – On / Off Keying
 • PWM – Pulse Width Modulation
 • FSK – Frequency Shift Keying
 • PSK – Phase Shift Keying
 • Manchester / BiPhase Encoding
RFID Basics

- **ASK / OOK**

![Diagram showing data stream, inverted modulator signal, and RF-field with data rate and field clocks](image-url)
RFID Basics

- ASK / OOK
 - DAMPED for a 0
 - UN-DAMPED for a 1
RFID Basics

- ASK – Amplitude Shift Keying
- OOK – On / Off Keying

11010010101010110010101010
11001100101101010101010101
0011010
RFID Basics

• Manchester encoding
RFID Basics

• Manchester encoding:
 • 1101001010101011001010110010011001101101010101010011
 010
 • 10 = '1'
 • 01 = '0'
 • 11 = Invalid!
 • 00 = Invalid!
RFID Basics

• Manchester encoding:
 • Two baseband pulse widths
 - '00' or '11' = long
 - '01' or '10' = 2 x short
 • Two pulse periods per bit
 - 11 01 00 10 10 10 10 10 11 00 10 10 10 10 11 00 11 00 10 11 01 01 01 01
 01 01 0 10 10 01 10 10 10 01 10 10 10
 • Automatic error detection
 - 11 == Invalid!
 • Self clocking
 - Skip ½ bit:
 - 10 10 01 01 01 01 01 01 10 01 01 01 01 10 01 10 01 01 10 10 10
 10 10 10 10 01 10 10
 • 11000000100001010011111111011
RFID Basics

• Manchester encoding:
 • Self-Clocking
 • Error-Detection
 • Ability to transmit ASK '0'
 • Distinguish from silence
RFID Basics

- BiPhase encoding

![Diagram showing BiPhase encoding process with data rate, inverted modulator signal, and RF-field representation.](image-url)
RFID Basics

- Modulation schemes
- FSK – Frequency Shift Keying
RFID Basics

• Modulation schemes
 • FSK – Frequency Shift Keying
RFID Basics

• ASK / FSK – Frequency Shift Keying
 – DAMPING creates secondary pulses by allowing bursts of carrier
 – Frequency of pulses over fixed period determines '0' or '1'
RFID Basics

- ASK / FSK – Frequency Shift Keying
 - 6 short = '0'
 - 5 long = '1'
- This message: 100101
RFID Basics

- Modulation schemes
 - PSK – Phase Shift Keying
RFID Basics

- Modulation schemes
 - PSK – Phase Shift Keying

www.aperturelabs.com
RFID Basics

• ASK / PSK – Phase Shift Keying
 • 50% DAMPING creates secondary CARRIER
 • Phase shift allows single burst of original CARRIER to break through
 - (2 x 50% = 100%)
 - High pulse is UN-DAMPED
 - Low pulse is DAMPED
RFID Basics

- ASK / PSK – Phase Shift Keying
 - 1 bit per period
 - Phase change = value change
 - 0110101000111100111000100110101101001110
 0101101100001
RFID Basics

• Modulation schemes
 • PWM – Pulse Width Modulation
 • '1' is a long pulse, '0' a short
 • This message is '11000'
 – Hitag2 'START_AUTH'
Passive TAGs

• One-way communication:
 • TAG → READER
• Fixed ID
• Plaintext
 – Even 'encrypted' is fixed – i.e. no session key
• About as secure as a barcode!
 – EM4102
 – HID Prox (plaintext content)
 – Indala (encrypted content)
Active TAGs

- Two-way communication:
 - READER → TAG & TAG → READER
- Fixed or Random ID
- May be encrypted
 - Session key
 - Two-Way Authentication
- As secure as underlying crypto
 - Hitag2 (broken)
 - DESFire (DES, 3DES, AES)
RFIDler LF (125/134 KHz)

• Very low cost
 • Standard: Full device with processor
 • USB / TTL CLI / API & GPIO
 - £30.00
 • Lite: RFID Coil & ASK mod/demod only
 • GPIO
 - £20
 • Kickstarter project
RFIDler LF (125/134 KHz)

- Utilise ANY modulation scheme, including bi-directional protocols
- Write data to tag
- Read data from tag
- Emulate tag
- Sniff conversations between external reader & tag
- Provide raw as well as decoded data
- Built-in antenna
- External antenna connection
- USB power and user interface
- TTL interface
- GPIO interface
- JTAG interface for programming
- USB Bootloader for easy firmware updating
RFIDler LF (125/134 KHz)

- EM4102 / Unique
- Hitag 1/2/S
- FDX-B (ISO 11784/5 Animal Standard)
- Q5
- T55xx
- Indala
- Noralsy
- HID Prox
- NXP PCF7931
- Texas Instruments
- VeriChip
- FlexPass
RFIDler LF (125/134 KHz)

How SD is it?

• Hardware Modulate / Demodulate:
 • ASK

• Software Modulate / Demodulate:
 • CARRIER
 • FSK / PSK
 • Manchester / BiPhase
 • PWM
RFIDler LF (125/134 KHz)

Reading PSK
RFIDler LF (125/134 KHz)

Emulation / Commands

• Measure in Field Clocks
 • 1 second / Frequency == 1 Field Clock
 • e.g. 1 / 125KHz == 8 uS
• Baseband timings from datasheets
RFIDler LF (125/134 KHz)

Emulating ASK
RFIDler LF (125/134 KHz)

Emulating Manchester
RFIDler LF (125/134 KHz)

Emulating FSK
RFIDler LF (125/134 KHz)

Emulating PSK
RFIDler LF (125/134 KHz)

Prototype 1
RFIDler LF (125/134 KHz)

Prototype 2
RFIDler LF (125/134 KHz)

Questions?

https://github.com/ApertureLabsLtd/RFIDler