Under the Hood: How Actaeon Unveils Your Hypervisor

Mariano Graziano and Andrea Lanzi

Eurecom, Sophia Antipolis, France, EU

HITB Kuala Lumpur, October 2013
Table of Contents

Eurecom S3 Security Lab

Actaeon Motivations
 What’s the problem we are facing
 Why this tool should be useful
 What Actaeon is not
 What is Actaeon?

Actaeon Internals
 VMCS Reverse Engineering Layout
 Locate Hypervisor in Memory
 Nested Virtualization: Turtle Technology
 Extended Page Table: (EPT)

Conclusion
Eurecom S3 Security Lab

Phd Students

Jelena Isachenkova
Davide Canali
Jonas Zaddach
Mariano 'emdel' Graziano
Giancarlo Pellegrino
Andrei Costin
Clementine Maurice
Main Topics of our research lab:

- Exploitation Techniques.
- Reverse Engineering.
- Web Security.
- Virtualization: Malware Detection.
- Forensics Analysis.

Check out our publications:
http://s3.eurecom.fr/publications.html Looking for motivated and Skilled PhD students!!!
What’s the problem we are facing?

Starting from a physical memory dump we design a system for recognize/analyze Hypervisors in memory and provide an interface for extract/analyze the virtual machines memory (HW-assisted Intel Virtualization).

Mariano Graziano and Andrea Lanzi
Why this tool should be useful?

- Virtual machines are everywhere nowadays (Clouds technologies, Multiple running OSs, Security Solutions etc.)
- There’s no forensic tool available for an automatic analysis of Virtual Machines.
- Even Volatility, the facto standard for Forensics memory analysis does not provide any tools/plugins for analyzing the virtual machines.
What Actaeon is not:

- A real-time detector for malicious Hypervisors.
- A forensic tool for Physical Memory Dump.
- A malware detector.
What is Actaeon?

Actaeon is a forensic Analyzer based on Volatility core that is able to spot and analyze hypervisors from a physical memory dump. Actaeon provides three main functionalities:

- **VMCS Layout Extractor**: This component is designed to extract the exact layout of a VMCS, by implementing a reverse engineering algorithm.

- **Hyper-Is**: This component is implemented for the Volatility framework, its goal is to scan the memory image to extract the VMCSs memory structures.

- **Virtual Machine Introspection Patch**: Acteon provides a transparent interface for analyzing physical memory of virtual machines.
Actaeon Architecture Analyzer

Memory Dump

μarchitecture DB

M-Scanner VMCS1N

M-Scanner VMCS0N

VMCS-0N Cluster

VMCS-1N Cluster

VMCS Validator

Hierarchy Check

Output

Mariano Graziano and Andrea Lanzi
The core of the Actaeon detection is based on finding out VMCS memory structures.

VMCS is the memory structures that contains information for keeping the state of the system when it switches from Hypervisor to virtual machines and viceversa (not-root-mode/root-mode).

VMCS bitmap fields set up which operations hypervisor will intercept during the system execution.

VMCS fields are defined by the Intel manual but the Layout is micro-architectures dependent and it is not known a prior.
VMCS reverse engineering Layout

By using the initialization hypervisor code (e.g. HyperDbg) we devise a reverse algorithm:

- Every field in the VMCS is associated with a **32 bits value**, **(encoding)**, that needs to be provided to the VMREAD/VMWRITE instructions to specify how the values has to be stored.

- Since the position (encoding) of the field is encapsulated into the instructions processor microcode in order to discover that, we fill the VMCS with some strings related to that field (typically numbers).

- Then we simply associate the encoding values utilized for filling a particular VMCS fields with the chosen numbers values and we can re-build the position of every fields in the VMCS memory structures.
DEMO: Reverse Engineering VMCS Layout
Locate Hypervisor in Memory (VMCS Clustering)

- We base our search on some particular fields values defined inside the VMCS memory structure:
 - **Revision ID**: It is the identifier that determines the layout of the rest of the structure. For the VMCS of the top hypervisor, this field has to match the value of the IA32 VMX_BASIC_MSR.
 - **VMX ABORT INDICATOR**: This is the VMX abort indicator and its value has to be zero. The field is the second entry of the VMCS area.
 - **VmcsLinkPointerCheck**: The values of this field consists of two consecutive words that, according to the Intel manual, should be set to 0xffffffff.
 - **Host CR4**: This field contains the host CR4 register. Its 13th bit indicates if the VMX is enabled or not.
Locate Hypervisor in Memory (VMCS Validation)
DEMO: Locate Hypervisor in Memory
Most of the commodity hypervisors support nested virtualization, *extracting the hierarchy of nested hypervisors could help an analyst* to see what is running inside the system.

KVM and Xen implement it using the *Turtle approach*, and a similar technique to multiplex the inner hypervisors VT-x/EPT is *also used by VMware*.

By looking for the nested VMCS structure or by recognizing the VMCS of a Turtle-like environment, *Actaeon can provide an extensible support to reconstruct the hierarchy of nested virtualization.*
Nested Virtualization: Turtle Technology

HYPERVISOR / HOST (L0)

GUEST OS / NESTED HYPERVERSOR (L1)

NESTED OS (L2)

HARDWARE

VMCS01

VMCS02

VMCS12
Virtualization Hierarchy Analysis

- We can infer the hierarchy between the hypervisors and distinguish between parallel and nested VMs by comparing the values of three fields: the GUEST CR3, the HOST CR3, and the HOST RIP.

- In a nested setup we can have two different hypervisors (represented by the two different HOST RIP addresses) while for parallel virtual machine the hypervisor is the same (same value of HOST RIP).

- By comparing the GUEST CR3 and HOST CR3 values we can distinguish among VMCS01, VMCS02, and VMCS12 in a nested virtualization setup.
Virtualization Hierarchy Analysis

Nested VMs

HOST CR3: A
GUEST CR3: B
HOST RIP: X

HOST CR3: B
GUEST CR3: C
HOST RIP: X

Parallel VMs

HOST CR3: A
GUEST CR3: B
HOST RIP: X

HOST CR3: C
GUEST CR3: D
HOST RIP: X

Mariano Graziano and Andrea Lanzi
DEMO: Nested Virtualization
EPT technology provides memory isolation among different virtual machines. It is marked with a dedicated flag in the Secondary Based Execution Control Field in the VMCS structure.

EPT is a transparent hardware mechanism that basically provide another level of translation from virtual address of guest OS and the real physical memory page.

The translation happens through different stages involving four EPT paging structures (namely PML4, PDPT, PD, and PT).
Extended Page Table: (EPT)
First of all we recognize and extract the EPT pointer inside the VMCS memory structure.

Then we simulate the EPT translation by programmatic walking through the PML4, PDPT, PD, and PT tables for each address that need to be translated.

We patch the core of Volatility, all the address translation functions, in order to have the chance to execute all the plugins without modifying the code.
DEMO: Extended Page Table (EPT)
We present the **basic background concepts about HW-assisted virtualization**.

We describe the **internals of Actaeon** as a forensic tool analyzer for virtual machine environment.

We show a **practical forensic analysis session** on how to use Actaeon for analyzing virtual machine.
Actaeon won the 1st Volatility Plugin Contest - 2013/08

- **Prof. Balzarotti and Prof. Francillon** e-mails:
 (davide.balzarotti@eurecom.fr, aurelien.francillon@eurecom.fr)

- **Actaeon web page:**
 http://s3.eurecom.fr/tools/actaeon/

- **Our lab web page:** http://s3.eurecom.fr/

- **Authors/Speakers:**
 Mariano Graziano (graziano@eurecom.fr) (@emd3l),
 Andrea Lanzi (lanzi@eurecom.fr)
Thank You!

Q&A?