
Sandy

The Malicious Exploit Analysis.

http://exploit-analysis.com/

Static Analysis and Dynamic exploit
analysis

Garage4Hackers

About Me

!   I work as a Researcher for a Global Threat Research firm.

!   Spoke at the few security conferences like HITB [KL],
BlackHat [US Arsenal], Cocon (2011, 2012), Nullcon (2011,
2012), HITB (AMS 2012) and BlackHat (EU 2012),
EKoparty (Argentina), CanSecwest(2013), HITCon(2013).

!   One of the admins of www.Garage4Hackers.com.

!   I cook .

!   https://twitter.com/fb1h2s

Garage4Hackers

About this Talk

!   With the rise in number of targeted attacks against
government and private companies, there is a certain
requirement for automated exploit analysis and
filtering document file formats.

!   This talk would be on intelligent automated exploit
analysis and a free tool [sandy] we have build for
analyzing these exploits.

!   Sandy is capable of doing exploit analysis on Doc, RTF,
XLS,PPT, Jar, Urls, but in the current talk we would
be concentrating on Java Exploits.

Garage4Hackers

What is Sandy

!   Sandy is an online sandbox capable of doing both static
and dynamic analysis of Malicious Office, PDF, Jar,
Flash, HTML.

!   The input would be the above mentioned file formats
and output would be extracted malwares, controllers,
Urls

Version 1: http://www.exploit-analysis.com

Garage4Hackers

Status of No of Documents
Exploits

Source: virus total

Analyzing samples manually is
more than impossible .

!   We see more than 2000 exploits a day, and need to
understand the file formats need to know the version
and the ugly obfuscation the exploit developers use, in
order to extract the binaries.

!   These days since java is getting raped , there are hell a
lot of java exploits as well.

!   We need a solution to bulk process these samples and
give the binary files.

Garage4Hackers

Why not use Current
Sandboxes

!   Time consuming: It takes least 3-4 minutes to do a dynamic
analysis on sandbox.

!   One sample at a time on a dedicated box is too much
resource consuming.

!   The sandbox might not have the actual software version to
get the exploit working .

!   Some times there would be version and language checking
for the exploit to work.

!   Java Exploits need the html template and right parameters
to get exploited properly.

Garage4Hackers

Static Analysis

!   Automating static analysis would not provide best
results always.

!   Manually spending time on each sample is suicidal .

!   And that’s when we decided to create sandy, intelligent
analysis is better than blind analysis.

Garage4Hackers

Sandy: Static and Dynamic Engine.
!   Performs both static and Dynamic analysis.

!   The static analysis done on the exploits is used to
perform intelligent dynamic analysis.

!   So final aim of sandy is to take in file formats and give
the binary, controllers embedded inside it and
attribution.

Garage4Hackers

The Architecture

• Web
Interface

Exploits

• Static
Analysis

Information

• Dynamic
Analysis

Report

Garage4Hackers

Demo

 How it works
 http://www.exploit-analysis.com

Garage4Hackers

Agenda
!   We will explain the many things we learned building

the system.

!   Java Security architecture explained.

!   Java Exploits explained in detail with [Poc].

!   Java exploits and different exploit reliability
mechanisms used .

!   Java Static analysis automation.

!   Java Dynamic instrumentation.

 { Not a lot of new things L, just automation and things I
learned building the tool }

 Garage4Hackers

Java Exploits [Applet]

!   Input is java .jar files or .class files.

!   Jar applets need the right arguments to run from a
webpage.

Java applets runs in a sandboxed environment and all the
exploits seen in the wild uses a sandbox bypass technique .

Garage4Hackers

The kind of Java Exploits seen between
2011-2013

!   Java Type Confusion Exploits.
[CVE-2012-0507, CVE-2013-0431]

!   Java Logic error and sandbox bypass.
[CVE-2012-4681]

!   Argument Injection [CVE-2010-0886]

!   Memory Corruptions. [CVE-2013-1493]

Garage4Hackers

•  Before Getting into Java Exploits and Exploit analysis

lets review Java security Architecture.

 Garage4Hackers

Java Sandbox

Default Sandbox settings prevents applet from:
 Ref: http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd.pdf

Garage4Hackers

Java Sandbox
!   Java Security is handled by the a Java Sandbox .

!   The role of the sandbox is to provide a very restricted
environment in which to run untrusted code obtained
from the open network.

!   The java sandbox is only enforced on web applets and
not on java codes running on the local machines.

 Ref:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-
spec.doc1.html

http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd.pdf

Garage4Hackers

Sandboxed :
 !   So the following applet with the compiled class file

when run form the browser would be executing on a
controlled environment.

!   <APPLET CODE="Main.class" WIDTH="800"
HEIGHT="500">

Garage4Hackers

By Default:
!   By default java is designed to be safe having solutions

for a lot of common security issues, including but not
limited to buffer overflows, memory management ,
type checking .

!   One type of files that are by default allowed to run
outside the Sandboxed environment are the "Signed
Applets"

Garage4Hackers

!   Previously all the security checks were programmatically
implemented.

!   But later a in-order to make things more convenient
and to manage java security restrictions easily , java
introduced an easy to manage "Java Platform Security
Model" .

Garage4Hackers

New Changes had the following
features

!   In other words, a less "powerful" domain cannot gain
additional permissions as a result of calling or being
called by a more powerful domain.

!   The above implementation brought in,

Permission Check | Access Controls Implementation

Garage4Hackers

Permission Check | Access Controls
Implementation .

!   All the permission are enforced in a policy file located

at []java-dir]/lib/security/java.policy .

Garage4Hackers

Access Controls Implementation

!   1) A stack based access control.

!   2) Each API when called is checked for it's
permission before getting executed.

!   3) The above is done by
java.security.AccessController.check-Permission

Garage4Hackers

So the basic pesudocode of java.security.AccessController.check-
Permission would be as follows.

Garage4Hackers

Few Java Properties to Remember.

Garage4Hackers

•  Java Restricted Packages

•  Java Security Manager

•  Reflection

•  Type safety

Java Restricted Packages

!   There are packages in Java that
cannot be accessed by un-trusted
code by default.

!   These packages have the capability to
execute privileged codes, or anything
that is possible with java.

à  sun.awt.SunToolkit

Garage4Hackers

Security Manager
 !   “Security manager is an object that defines a security policy

for an application”

!   You can programmatically manage security policies
using the SecurityManager class

! Java.lang.System.setSecurityManager is the method that
sets security manager for the application.

!   Turning off the security manager is simple as adding
this to you'r code. [Having right privilege]

 Java.lang.System.setSecurityManager(null)

Ref:BH_US_12_Oh_Recent_Java_Exploitation_Trends_and_Malware_WP.pdf

Garage4Hackers

The following Packages Implement the
Security Manager

Garage4Hackers

Ref: http://www.exploit-db.com/wp-content/themes/exploit/docs/21321.pdf

Sandbox Bypass
!   Disable Security manager code:

Java.lang.System.setSecurityManager(null)

!   Disabling security manager is only possible by a
signed java applet or after a privilege escalation,
and hence the above code is always seen in all
the latest java exploits [obfuscated] majority of
times.

!   When a java sandbox bypass in done the code
will have privileges to disable the security
manager.

Garage4Hackers

Analysis of Type of Exploits and Poc

!   Java Type Confusion Exploits.
[CVE-2012-0507, CVE-2013-0431]

!   Java Logic error and sandbox bypass.
[CVE-2012-4681]

!   Argument Injection [CVE-2010-0886]

!   Memory Corruptions. [CVE-2013-1493]

Garage4Hackers

Reflection

!   Reflection is commonly used by
programs which require the ability to
examine or modify the runtime behavior
of applications running in the Java
virtual machine.

!   Ref: http://docs.oracle.com/javase/tutorial/reflect/

Garage4Hackers

With Reflection :
 1) Can create an instance of a class at runtime and use it

while executing.

2) Can access private class members

3) We can access private methods and variable, hidden
class members .

!   None of the above is possible when security manager is
enabled.

Currently security checks are for all Java programs

Garage4Hackers

Type safety
!   The storage format, having defined a specific type or

storage .

!   Type safety is generally done by

 1) performing static analysis before code runs

 2)performing type safety check when program runs

 Java type safety is done by static check at the time of
compilation.

So if a type changes at runtime then it’s impossible to do
the safe check.

Garage4Hackers

Type Confusion
!   One type impersonating as another .

!   Type confusion can be at object level can lead to vulnerability at whole application level.

Ref:(http://www.securingjava.com/chapter-two/chapter-two-10.html

http://www.securingjava.com/chapter-five/chapter-five-7.html

Garage4Hackers

CVE-2012-0507 - Java Atomic Reference Array
Exploit

! POC Explained

AtomicReferenceArray ara = new AtomicReferenceArray(new Integer[1]);

Integer value = (Integer)ara.get(0); // value set to type integer of atomic ref array

AtomicReferenceArray uses sun.misc.Unsafe to directly access the array

With this we can do “ AtomicReferenceArray.set() “ method allows you to store any
reference in the array.

So we can replace integer value with any reference in the array, and type safety check is
bypassed.

Garage4Hackers

POC

•  Now value contains a string while being typed as Integer.

•  With this we can disable security manager , and sanbox restriction would
be bypassed.

Garage4Hackers

AtomicReferenceArray ara = new
AtomicReferenceArray(new Integer[1]);

ara.set(0, "foo");

Integer value = (Integer)ara.get(0);

Memory corruption

!   CVE-2013-1493 Memory corruption in java

POC :

•  Memmory corruption in BufferedImage .

•  Before triggering the vulnerability , call java garagbage collector to clean
the heap.

•  Do a heap spray , trigger the vulnerability and get control of the
program and disable java security manager, since the applet has control
over it.

•  Game Over.

Garage4Hackers

CVE-2012-4681 - Accessing restricted class with
[com.sun.beans.finder.ClassFinder]

! Classfinder.findclass was able to access restricted class .

!   Get accessor to private "acc" field of Statement.class . {Java 7}

!   Create Access control context with all permission

!   Create statement that disables security manager.

!   Set "acc" field accessor with permissions and security manager
statement.

!   Execute and disable security manager

!   Game over.

Ref: http://www.docjar.com/docs/api/com/sun/beans/finder/ClassFinder.html

Garage4Hackers

Argument Injection
!   CVE-2012-0500: Java Web Start Plugin

! Poc Code explanation.

! Arg injection in JNPL config file.

http://www.garage4hackers.com/content.php?r=114-Binary-Analysis-of-Oracle-Java-
CVE-2012-0500-and-Alternate-Exploitation-on-Win-Linux

Garage4Hackers

Java Exploits HTML Template

Garage4Hackers

How Sandy Handles HTML
Obfuscation

!   All the analysis are carried out on a real browser whose
driver is controlled by sandy code.

!   Once the exploits runs the obfuscated code and writes
the exploits to the dom, the de-obfuscated html is
picked up and analyzed.

!   This way all runtime obfuscation would be decompiled
and we would get the original payload.

Garage4Hackers

Obfuscation
Javascript

! Eval

! document.write

! unescape(unescape(

!   new ActiveXObject(String.fromCharCode(

!   Other runtime DOM writes.

Garage4Hackers

Controlled Browser

!   Certain exploits get triggered only on a “mousemove”
or any “mouse-events”, we can pass those as well.

!   Sandy is able to detect these events and would be able
to pass any JS events to the browser there by defeating
the above protections.

!   We can analyze multiple urls at the same time on a
single sandbox. [Less resource consuming]

Garage4Hackers

URL Analysis

!   Each URL analysis go through individual proxys.

Merits: One sandbox[browser] can analyze multiple URLS.

!   Inject our JavaScript logger into each page.

<script src="logger.js" type="text/javascript"></script>

The Html/JS traffic is inspected for common exploit
pattern.

Once Dom is populated we inspect that source again.

Garage4Hackers

Demo

Garage4Hackers

!   Sandy Dynamic module dealing with URL Exploits
and obfuscation.

!   If a jar is dropped then a static analysis is done on it.

Sandy Submission:1
URL Module

!   Based on a URL submission on: 2013-08-22

Karnataka Gov website infected.

http://exploit-analysis.com/sandy/view/
linkscan_view.php?id=XqsmOI%2BFHGTY8i1TTHT7dg
%3D%3D

http://exploit-analysis.com/sandy/view/
linkscan_view.php?id=z7B42P%2Fd1v1077W%2F06Yo6g
%3D%3D

!   A music Company infected with java exploit.

Garage4Hackers

If .class file:

!   Disassemble the source look for strings matching
external links.

!   Identify the Java build version using the magic number
+ 4

!   Decompile the source using [Jad]

Garage4Hackers

If jar file:

!   Disassemble the source look for strings matching
external links.

!   Identify the Java build version using the magic number
+ 4

!   Decompile the source using [Jad]

!   Extract all files from the jar file

!   Detect CVE or possible Java version the exploit will
work.

Garage4Hackers

Java Static Analysis
!   Search for string for any java version|lang mentioned.

“System.getProperty(“

!   Extract Java main class name.

!   Extract imported class names.

!   Extract parameter names to be used and to be supplied
to the applet to run properly.

!   Extract os commands other other interesting
information's.

!   Extracts Encryptions used .

à javax.crypto.*
Garage4Hackers

•  If jar:
Look for binaries inside the jar files.
Some times xor encrypted, do quick brute do
an entropy analysis to find key.

Garage4Hackers

Identify the java main class.

•  Look inside java manifest file

•  Disassemble jar code locate “main(“ string

•  Use javap[magic headers] to identify the version built.

•  Use the java class path load the java file .

Garage4Hackers

Demo Jar Analysis

Garage4Hackers

!   Sandy static module dealing with Jar Exploits.

Central Tibet Waterhole Java exploit
!   Submission on 16th Aug

Garage4Hackers

Central Tibet Waterhole Java exploit

Garage4Hackers

!   Attackers hacked Central Tibet website. [Trusted and
most visited site for Tibet]

!   Added a java exploit .

!   On users visiting the site they would be infected by a
malware.

!   The dropped malware was a windows backdoor.

! http://exploit-analysis.com/sandy/view/view_java.php?
md5=0K%2B7TOrG6AqDbVRTm54ZCQ%3D%3D.

Obfuscation in Java code

!   String Obfuscation and dynamic string generation.

!   Dynamic Class resolution .

!   Class method obfuscation .

!   Anti Decompiling

Garage4Hackers

String Obfuscation in
in Java

!   Java obfuscation is done mainly by dynamically
constructing the function calls and strings.

! Example

!  

Garage4Hackers

Sandy Submission:3
Java Module

Submission on 12-09-2013
Java exploit, dropping windows and OSX malware , possibly
targeting #tibet.

http://exploit-analysis.com/sandy/view/view_java.php?md5=94ra2GG5en6x7uz3dtkSAg%3D%3D

Garage4Hackers

Obfuscation using 2 way
encryptions.

!   Look for traces of common algorithms used based on
signatures.

import javax.crypto.*;

import java.security.spec.InvalidKeySpecException;

!   Look for traces of Encrypted strings, and decryption
keys.

Based on string length 16-byte, 32-byte etc. And try to do a
quick brute force on possible algorithms.

Garage4Hackers

Java Malware

Analysis Demo

http://exploit-analysis.com/sandy/view/view_java.php?
m d 5 = J R 2 X v 0 Q u T l g v e 9 o % 2 F d z N P 1 A % 3 D % 3 D

Garage4Hackers

Anti Decompiling
 !   Then static analysis becomes hard for sandy, so it proceeds

to dynamic.

Read More:
http://www.securelist.com/en/analysis/204792300/
Anti_decompiling_techniques_in_malicious_Java_Applets

Garage4Hackers

If No Binary : Do Dynamic
Analysis

!   Construct an applet template.

!   Use the previous collected add to applet template pass
data to the appropriate JVM sandboxed machine.

!   The JVM is hooked in using our monitor, which logs
important function calls and arguments.

!   This way we gather all string generated at runtime and
the functions called.

Garage4Hackers

The JVM Hook

!   Code would be available here soon.

! http://exploit-analysis.com/code/

Garage4Hackers

Same steps goes for all other
file formats

!   This way we would have a good intelligence
information on what we are processing.

!   So if static analysis fails, we would be able to use the
collected information to send it to an appropriate
sandbox with the right exploit application installed.

Garage4Hackers

Sandy

!   Sandy version 1 Stable release is available online at

http://exploit-analysis.com.

Version 1 sucks L but more codes is gone flow in and a
better release would be out soon.

Garage4Hackers

Thank You

!   Contact me at:

 https://twitter.com/fb1h2s

https://www.facebook.com/loverahulsas

fb1h2s@gmail.com

 Garage4Hackers

