Non-Hidden Hidden Services Considered Harmful

Filippo Valsorda
George Tankersley
What is Tor?

- **The Onion Router**

- Provides client anonymity

- Works by routing your connection though other machines
Building a circuit

How Tor Works: 1

Step 1: Alice’s Tor client obtains a list of Tor nodes from a directory server.
Building a circuit

How Tor Works: 2

Step 2: Alice’s Tor client picks a random path to destination server. Green links are encrypted, red links are in the clear.
Building a circuit

1. How Tor Works: 3

Step 3: If at a later time, the user visits another site, Alice’s tor client selects a second random path. Again, green links are encrypted, red links are in the clear.
Hidden Services

- Provide *bidirectional* anonymity
- Supports generic TCP services
- Famous for drug markets
 - Silk Road
 - Silk Road 2
Hidden Services

But they’re actually used for good

- Whistleblowing (SecureDrop)
- Private chat (Ricochet, XMPP-over-HS)
- Anonymous publishing (of course!)
Hidden Services

Step 1: Bob picks some introduction points and builds circuits to them.
Hidden Services

Step 2: Bob advertises his hidden service -- XYZ.onion -- at the database.
Hidden Services

Step 3: Alice hears that XYZ.onion exists, and she requests more info from the database. She also sets up a rendezvous point, though she could have done this before.
Hidden Services

Step 4: Alice writes a message to Bob (encrypted to PK) listing the rendezvous point and a one-time secret, and asks an introduction point to deliver it to Bob.
Hidden Services

Step 5: Bob connects to the Alice's rendezvous point and provides her one-time secret.
Hidden Services

Step 6: Bob and Alice proceed to use their Tor circuits like normal.

Alice

Bob
Hidden Services

Step 2: Bob advertises his hidden service -- XYZ.onion -- at the database.
Hidden Services

The “database” is a DHT made up of stable relays
- directory authorities grant $HSDir$ flag
- not related to $Stable$ flag

How do we choose where to publish?
HSDir selection

Choose two sets of 3 relays with HSDir flag

Think “consistent hashing”
• relays arranged in a ring sorted by identity

Based on a predictable formula (#8244)
HSDir selection

hs-descriptor-id =

 SHA1(id || SHA1(time-period || replica))

id: first 80 bits of SHA1(public key)
time-period: days since epoch (+offset)
replica: which set of HSDirs
HSDir selection
HSDir selection

facebookcorewwwi.onion
descriptor-id =
SHA1(facebookcorewwwi || SHA1(16583 || 0))
SHA1(facebookcorewwwi || SHA1(16583 || 1))

replica 0: ys5pml4c6txpw5hnq5v4zn2htytfejf2
replica 1: fq7r4ki5uwcxdxibdl7b7ndvf2mvw2k2
HSDir selection

HSDir

Desc ID (replica 0)

Desc ID

Desc ID (replica 1)

HSDir
Why did he just explain all this?

Point of the talk!

Hidden service users face a greater risk of targeted deanonymization than normal Tor users.
Vulnerability of Tor

Low-latency implies correlation attacks
Correlation attacks

in Tor, “both ends” means we’re usually just worried about entry nodes and exit nodes

- **entry nodes** see when a connection starts
- **exit nodes** see when it terminates
Correlation attacks

worried about entry nodes and exit nodes

- **entry nodes** see when a connection starts
- **exit nodes** see when it terminates

Tor has protections for entry/exit positions
- entry guards, bad relay monitoring, size of network
Correlation attacks

It is hard to become both ends of a circuit.

What else can see when connections happen?
Hidden Services

Step 3: Alice hears that XYZ.onion exists, and she requests more info from the database. She also sets up a rendezvous point, though she could have done this before.
Hidden Services

An HSDir for a hidden service gets a lookup on ⅙ of requests for information about the hidden service.

A lookup indicates a user trying to connect to the hidden service.
Correlation attacks

worried about entry nodes and exit nodes

- **entry nodes** see when a connection starts
- **exit nodes** see when it terminates

For a hidden service, the HSDir can see when a connection happens
Correlation attacks

worried about entry nodes and **HSDir**

- **entry nodes** see when a connection starts
- **HSDir** see when it terminates

For a hidden service, the HSDir can see when a connection happens
Correlation attacks

If your target uses a hidden service, don’t need exit relay to see when the connection happens.

Instead, be an HSDir.
Hidden Services

It is very easy to become HSDir
- You just need 4 days uptime
- It should be harder than it is (#8243)

In fact, very easy to become specific HSDir
Positioning attack

SHA1(id || SHA1(time-period || replica))
Positioning attack

\[
\text{SHA1(id || SHA1(time-period || replica))}
\]
Positioning attack

Predictable and fast? Bruteforce it!

1) Calculate descriptor IDs for the service
2) Generate random 1024-bit RSA key
3) Check if hash precedes the first real descriptor ID in the DHT
4) If not, goto 2
Correlation attacks

If your target uses a hidden service, don’t need exit relay to see when the connection happens.

Instead, be their HSDir.
Correlation attacks

If your target uses a hidden service, don’t need exit relay to see when the connection happens.

Instead, be every HSDir.
Positioning attack

facebookcorewwwi.onion
descriptor-id =
SHA1(facebookcorewwwi || SHA1(16583 || 0))
SHA1(facebookcorewwwi || SHA1(16583 || 1))
replica 0: ys5pml4c6txpw5hnq5v4zn2htytfejf2
replica 1: fq7r4ki5uwcxdxibdl7b7ndvf2mvw2k2
HSDirs should have been

<table>
<thead>
<tr>
<th>Fingerprint</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4F205C1024779B663584BBDFEB3F9C3C7689750</td>
<td>aoiharu</td>
</tr>
<tr>
<td>C4F2B201A09F8D72EFE2648C0B998249E9B95D15</td>
<td>ovce</td>
</tr>
<tr>
<td>C514A3E6D98385E47BA6D67C632383A549C1C115</td>
<td>CherryBomb</td>
</tr>
<tr>
<td>2C40E3C8B254A3F20064E7914F8A39FF3DE1CCC0</td>
<td>jantor</td>
</tr>
<tr>
<td>2C4488ECDE14563D25DA3D1A8B172C4E547F4CD8</td>
<td>RebelOnion1</td>
</tr>
<tr>
<td>2C4E15CD40EE3D2D6F062F04ADFE9B85C8C3C52B</td>
<td>Unzane</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Nickname</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>C4BF08CE48880453DC0E9186AF2B4922BB275380</td>
<td>unduplicablerelay</td>
</tr>
<tr>
<td>C4C8DF4DDFCFAB2936C6F07E91D7D6AF07A6E147</td>
<td>EquaTOR</td>
</tr>
<tr>
<td>C4E108F2C98F4B60BA9EE560DD928296632D4389</td>
<td>Unnamed</td>
</tr>
<tr>
<td>2C3FC687783A4F1E9AA098EB8762F8FF7331C2DD</td>
<td>mushroomMUSHROOM</td>
</tr>
<tr>
<td>2C40B4194C26857A7A26E6B9E8D0C63E40600A1C</td>
<td>penguinxtor</td>
</tr>
<tr>
<td>2C40E3C8B254A3F20064E7914F8A39FF3DE1CCC0</td>
<td>jantor</td>
</tr>
</tbody>
</table>
HSDirs actually were

<table>
<thead>
<tr>
<th>Fingerprint</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4BF08CE48880453DC0E9186AF2B4922BB275380</td>
<td>unduplicablerelay</td>
</tr>
<tr>
<td>C4C8DF4DDFCFAB2936C6F07E91D7D6AF07A6E147</td>
<td>EquaTOR</td>
</tr>
<tr>
<td>C4E108F2C98F4B60BA9EE560DD928296632D4389</td>
<td>Unnamed</td>
</tr>
<tr>
<td>2C3FC687783A4F1E9AA098EB8762F8FF7331C2DD</td>
<td>mushroomMUSHROOM</td>
</tr>
<tr>
<td>2C40B4194C26857A7A26E6B9E8D0C63E40600A1C</td>
<td>penguinxtor</td>
</tr>
<tr>
<td>2C40E3C8B254A3F20064E7914F8A39FF3DE1CCC0</td>
<td>jantor</td>
</tr>
</tbody>
</table>
HSDirs actually were

<table>
<thead>
<tr>
<th>Fingerprint</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4BF08CE48880453DC0E9186AF2B4922BB275380</td>
<td>unduplicablerelay</td>
</tr>
<tr>
<td>C4C8DF4DDFCFAB2936C6F07E91D7D6AF07A6E147</td>
<td>EquaTOR</td>
</tr>
<tr>
<td>C4E108F2C98F4B60BA9EE560DD928296632D4389</td>
<td>Unnamed</td>
</tr>
<tr>
<td>2C3FC687783A4F1E9AA098EB8762F8FF7331C2DD</td>
<td>mushroomMUSHROOM</td>
</tr>
<tr>
<td>2C40B4194C26857A7A26E6B9E8D0C63E40600A1C</td>
<td>penguinxtor</td>
</tr>
<tr>
<td>2C40E3C8B254A3F20064E7914F8A39FF3DE1CCC0</td>
<td>jantor</td>
</tr>
</tbody>
</table>
Vulnerability of Tor

worried about entry nodes and HSDir

- **entry nodes** see when a connection starts
- **HSDir** see when it terminates
Vulnerability of Tor

worried about entry nodes and HSDir
- many people see when a connection starts
- HSDir see when it terminates
Vulnerability of Tor

worried about entry nodes and HSDir
- **many people** see when a connection starts
- **HSDir** see when it terminates

“entry” does not just mean your entry node
- ISP, malicious access point, pen register…
Summarizing all of that

1) HSDirs can serve the same purpose against a hidden service as a malicious exit relay would in a basic correlation attack

2) The “entry side” of a Tor connection can be monitored by means other than compromising guards
Summarizing all of that

It’s actually worse, because it’s way easier to be the user’s HSDir.

Hidden service users face a greater risk of targeted deanonymization than normal Tor users.
Corollary

If you run a hidden service that does not need location hiding, you are unnecessarily exposing your users to this risk.

It would probably be better to let them use Tor on your TLS-enabled clearnet site.
There is hope

Proposal #224 is “Next-Generation Hidden Services”

Go read it and help out if you can!

https://tinyurl.com/hidserv
In the meantime: defense!

HS operators can do this.
You can trust an HSDir you run yourself.

With some safety margin:
6 nodes * 5 days = 30
with 2 nodes per IP, 15 machines (rolling buffer)
In the meantime: defense!

HS operators can do this.
You can trust an HSDir you run yourself.

Free detection: you will notice if someone competes with you for the HSDir positions.
In the meantime: detection!

Hidden service operators should watch HSDirs

What makes a suspicious HSDir?
Suspicious HSDir metrics

- Dense fingerprints
- Low age
- Low longevity after the HSDir event
- Many keys seen on the same (or related) IP

- And maybe other stuff! AS? Clustering?
Suspicious HSDir metrics

We made tools for this: https://hsdir.org
Questions?
Filippo Valsorda (@FiloSottile)
filippo@cloudflare.com

George Tankersley (@_gtank)
george.tankersley@coreos.com

https://hsdir.org