
IRMA – An Open Source Platform

for Incident Response & Malware Analysis

Guillaume Dedrie1, Fernand Lone-Sang1, Alexandre Quint1

1 Quarkslab, 71 Avenue des Ternes, 75017 Paris
{gdedrie, flonesang, aquint}@quarkslab.com

@qb_irma, http://irma.quarkslab.com

Abstract. IRMA is an open-source platform aiming at analyzing suspicious files and facilitating the quick

detection of viruses, worms, trojans, and all kinds of malware. Like several automated malware analysis plat-

forms, IRMA provides a central place where suspicious files can be tested towards major anti-viruses engines

and custom analyzers (static file analyzers, sandboxes, etc.). However, an important asset of IRMA is that

you keep control over where your files go and, more importantly, who gets your data: once you install IRMA

on your network, your data stays on your network.

1 Introduction

The acronym IRMA stands for “Incident Response & Malware Analysis”. It is an open-source platform designed to help

identify and analyze suspicious files by providing a central place where those files can be tested towards major anti-virus

engines. Contrary to popular automated malware analysis platforms such as VirusTotal1, Metascan2, Camal3, Malwr4 or

AVCaesar5, IRMA attaches importance to you keeping control over where your files go and, more importantly, who gets

your data. Once you install IRMA on your network, your data stays on your network, samples are not shared with the anti-

malware or the security industry if not desired and the results of their analysis stay private.

IRMA enables you to append your custom analyzers (static file analyzers, sandboxes, etc.) and your own tools (unpackers,

disassemblers, etc.) easily to ones that are available and shared by the community. In that way, IRMA can be considered as a

file analysis framework aiming at assisting a malware analyst in extracting as relevant information as possible from a suspi-

cious file.

Furthermore, today's defense is not only about analyzing file. IRMA can help you in getting a fine overview of the incident

you dealt with: where and when a malicious file has been seen, who submitted a hash you keep a watch on, where in your

information system a hash has been found, which anti-virus detects it, etc.

IRMA is still a young project. Up to now, we focused our efforts on instrumenting multiple anti-virus engines running either

on Microsoft Windows or GNU/Linux systems. Thus, in this lab, we describe first the overall architecture of IRMA, which

has been designed as a 3-part system. Then, we guide you in setting up your own platform inside virtual machines. Finally,

we develop together a new analyzer and include it to your own IRMA setup. By the end of the lab, if you want to support

this ambitious project or to reuse it, feel free to join the community: to contribute to it by submitting the analyzer you have

developed or to come to see us and discuss the mechanics under the hood.

 Visit our homepage: http://irma.quarkslab.com

 Read the docs http://irma.readthedocs.org/

 Clone the sub-projects: https://github.com/quarkslab/{irma-frontend, irma-brain, irma-probe}

 Follow us on twitter: @qb_irma

 Do not hesitate to ask on IRC: #qb_irma@freenode

1 VirusTotal - Free Online Virus, Malware and URL Scanner – https://www.virustotal.com/
2 Metascan Online - Free file scanning with multiple antivirus engines – https://www.metascan-online.com/
3 Camal - COSEINC Automated Malware Analysis Lab – https://camal.coseinc.com
4 Malwr - Malware Analysis by Cuckoo Sandbox – https://malwr.com/
5 AVCaesar – https://avcaesar.malware.lu

mailto:%23qb_irma@freenode

2 Overall Architecture

IRMA has been designed as a 3-part system: one or multiple frontends where you submit suspicious files and retrieve analy-

sis results; an analysis dispatcher referred to as the brain; one or multiple analyzers called probes registered with the brain

and hosted on one or multiple machines.

Fig. 1. File Analysis Workflow

Figure 1 describes IRMA’s workflow to analyze a suspicious file. An analysis begins after an end user uploads, one or mul-

tiple files to the frontend and selects the desired analyzes to be performed. Uploads to the frontend, which exposes a Restful

API, are performed using a client. When the scan is launched, the frontend checks for existing files and results first in its

SQL database. If uploaded files are new or whether a rescan is required, it stores the uploaded files, uploads them to the

FTP-TLS server on the brain and schedules analyzes on the analysis dispatcher worker using asynchronous jobs. The worker

on the brain splits the analysis into analyzes subtasks that are queued for the required analyzers on the probes. Once pro-

cessed, workers at the probe send back results to the brain, which forwards them back to the frontend. Raw results are stored

in a No-SQL database (linked to the SQL database) and the Restful API filters these results in order to return only relevant

information to the user.

2.1 The WebUI and CLI clients

The irma-frontend subproject comes with two clients: a web user interface client and a command line interface client.

Both clients query the Restful API to upload files to be analyzed, to schedule analysis jobs and to get their results. The CLI

client displays to the user the raw results returned by the API on the frontend. The WebUI is user-friendlier. It is composed

of static files served by an Nginx web server. It relies heavily on AngularJS to query the API exposed by the frontend and

handle dynamic views in web-applications.

One interesting feature that we have implemented on these clients and, to the best of our knowledge, does not exists in other

platform, is the analysis of a group of files in once. Uploading a file one at the time and analyzing their results one by one

can be tedious. You may want to scan a bunch of files linked to a malware for instance (a malware family, different pay-

loads, etc.), to have a global view of the results and to compare them.

2.2 The Restful API

The Restful API is a python application served by an UWSGI server. It enables clients to perform queries on the SQL and

the No-SQL database servers in order to retrieve analysis results or to search for relevant information. Furthermore, it can be

used to schedule asynchronous analysis jobs on the brain. The latter relies on Celery, an asynchronous task queue or job

queue based on distributed message passing.

Conscious that each analyst may want to combine data in different ways, we designed the API to be modular enough: one

can add extra modules and extra routes to the API to answers to his analysis needs.

2.3 The Analysis Dispatcher

The analysis dispatcher is the central nerve of the IRMA platform. The intelligence of the whole platform resides in this

component, which is why we compare it to a brain and called it that way. It also relies on a Celery worker to distribute anal-

ysis jobs to the available analyzers, hosted on probes. Each analyzer can register itself to the brain by creating a job queue

where the brain can push orders to him.

Currently, all analyzers are at the same level. It is not possible yet to automatically dispatch to a specific probes according to

the file’s mime-type for instance. At the long term, we would like to allow the analysts to define their own recipes along with

their analysis, with the objective to let them tune their analysis the way they want it to be.

2.4 The Registered Analyzers

As mentioned previously, analyzers can register themselves with the brain by creating their own job queues. Consequently,

new analyzers can be developed with minimum efforts with the associated results auto-magically exposed by the frontend.

So far, irma-probe subproject is bundled with 24 analyzers (in version 1.2.0).

 19 anti-viruses analyzers:

Analyzer Name Anti-Virus Name Platform

ASquaredCmd Emsisoft Command Line Microsoft Windows CLI

Avira Avira Microsoft Windows CLI

AvastCoreSecurity Avast GNU/Linux CLI

AVGAntiVirusFree AVG GNU/Linux CLI

BitdefenderForUnices Bitdefender GNU/Linux CLI

ClamAV ClamAV GNU/Linux CLI

ComodoCAVL Comodo Antivirus for Linux GNU/Linux CLI

DrWeb Dr.Web GNU/Linux CLI

EsetNod32 Eset Nod32 Business Edition GNU/Linux CLI

EScan eScan GNU/Linux CLI

FProt F-Prot GNU/Linux CLI

FSecure F-Secure GNU/Linux CLI

GData G Data Antivirus Microsoft Windows CLI

Kaspersky Kaspersky Internet Security Microsoft Windows CLI

McAfeeVSCL McAfee VirusScan Command Line GNU/Linux - Microsoft Windows CLI

Sophos Sophos GNU/Linux - Microsoft Windows CLI

Symantec Symantec Endpoint Protection Microsoft Windows CLI

VirusBlokAda VirusBlokAda GNU/Linux CLI

Zoner Zoner Antivirus GNU/Linux CLI

 1 file hash database for Microsoft Windows:

Analyzer Name Database Description

NSRL National Software Reference Library collection of digital signatures of known, tracea-

ble software applications

 3 metadata analyzers:

Analyzer Name Analyzer Description

StaticAnalyzer PE File Analyzer PE File analyzer adapted from Cuckoo Sandbox

PEiD PE File packer analyzer PEiD

Yara Checks if a file match yara rules Yara

 1 external site:

Analyzer Name Analysis Platform Description

VirusTotal VirusTotal Report is searched using the sha256 of the file

which is not sent

3 Installation Procedure

3.1 Hardware requirements

IRMA can be split into a 3-part system: the frontend, the brain and the probes. Depending on how you intend to use the

platform and the kind of probes you intend to use, the 3 components may or may not be installed on a unique host.

The frontend and the brain must be installed on a GNU/Linux system, preferably on a Debian distribution, which is support-

ed and known to work. According to the kind of probes and their dependencies, each analyzer can be installed on separate

hosts or share the same host as far as they do not interfere with each other6. So forth, only Debian distributions and Microsoft

Windows 7 systems have been tested for probes.

We cannot give you any specific hardware requirements. On one hand we managed to run the whole IRMA platform on a

single machine by hosting it with multiple systems inside virtual machines: this setup gives fairly high throughput as long as

it has reasonable IO (ideally, SSDs), and a good amount of memory (our setup was an i7 cpu with 16 GB ram on regular

drives (at least 200 GB required), on the other hand, a lighter version of the system with the three parts together and only a

few probes (ComodoCAVL, StaticAnalyzer, ClamAV, VirusTotal and McAfeeVSCL) was successfully installed

on a single virtual machine (1 GB of Ram and 4 virtual processors, you could download this demo virtual machine7).

3.2 IRMA Automatic Installation with Vagrant (Fast internet access required)

Note: If you want to see more in details what the following automation scripts are doing just have a look at the manual instal-

lation procedure for each component8.

IRMA heavily relies upon software components that must be configured specifically to serve the platform. As the configura-

tion of these components can be tedious, time consuming and error prone, we searched for a better way to hit the goal of

higher agility and faster code deployment. We have turned to DevOps, a variety of techniques, tools, and methodologies

employed to make developers and operations work together in order to hit higher speeds and take advantage of larger and

larger scale infrastructures. This section describes how to automate and install a whole up-to-date IRMA platform within

virtual machines in a matter of minutes.

3.2.1 Prerequisites

In order to provision and deploy IRMA platform for this lab, you need to install the following software:

 Vagrant9, version 1.7 or higher

 VirtualBox10 Virtual Machine Manager, as it is used by default by Vagrant

 Ansible, version 1.8 or higher

6 For instance, we managed to host several GNU/Linux anti-viruses on a unique probe by preventing it to launch daemons at

startup. This is difficult for Microsoft systems on which it is not recommended to install multiple anti-viruses.
7 http://irma.quarkslab.com/download/1.2.0/irma-1.2.0.vmdk
8 http://irma.readthedocs.org/en/latest/manual/index.html
9 http://www.vagrantup.com/
10 https://www.virtualbox.org/

3.2.2 Cloning the repositories

IRMA subprojects are hosted on github.com. The Vagrant files and the Ansible playbooks to install IRMA are also hosted on

github. Make sure to clone all the repositories with their dependencies:

$ mkdir IRMA
$ pushd IRMA
$ git clone --recursive https://github.com/quarkslab/irma-frontend.git
$ git clone --recursive https://github.com/quarkslab/irma-brain.git
$ git clone --recursive https://github.com/quarkslab/irma-probe.git
$ git clone --recursive https://github.com/quarkslab/irma-ansible.git
$ popd

Vagrant provides easy to configure, reproducible, and portable work environments built on top of industry-standard technol-

ogy and controlled by a single consistent workflow to help maximize the productivity and flexibility of you and your team.

Machines are provisioned on top of VirtualBox and provisioning tools such as Ansible can be used to automatically install

and configure software on the machine. The provided Vagrant file expects a specific directory layout. Make sure you have

the following directory layout after cloning the repositories:

$ tree –L 1 IRMA
IRMA
├── irma-ansible
├── irma-brain
├── irma-frontend
└── irma-probe

If you choose to change the directory layout, make sure to change the YAML files in the irma-ansible/environments/
folders accordingly. The options that must be adapted are variables prefixed with "share_", which indicate to vagrant

where to get the application of each subsystem on your computer.

3.2.3 Preparing your virtual machines with Vagrant

The provided Vagrant file defines setups for 4 environments, described in the YAML files located in irma-
ansible/environments/:

 dev: install each component in separate virtual machines for development purpose;

 prod: install each component in separate virtual machines for production purpose;

 allinone_dev: install all components in a single virtual machine for development purpose;

 allinone_prod: install all components in a single virtual machine for production purpose.

Along this lab, we will be using the allinone_dev environment, as we will develop together custom probes. Make sure to

define the VM_ENV environment variable for "allinone_dev" or change the VM_ENV variable in the VagrantFile ac-

cordingly, then run Vagrant:

$ export VM_ENV="allinone_dev"
$ vagrant up --no-provision

Once the master box file has been downloaded, Vagrant should have set up a virtual machine ready to be provisioned.

https://docs.vagrantup.com/v2/provisioning/

3.2.4 Provisioning your Virtual Machine

By default, the virtual machine is provisioned with default configuration files bundled with IRMA. As the INI configuration

files located at irma-{brain, frontend, probe}/config/*.ini are transferred from the host to the virtual machine,

you will need to locally modify them to match the user and password defined in the configuration files in the irma-
ansible-provisioning/group_vars/* folder.

You are ready now to provision your virtual machine. The following command will download and configure all the required

components IRMA relies upon:

$ sudo ansible-galaxy install -r ansible-requirements.yml
$ vagrant provision

3.3 IRMA Installation without internet

One of the first thing the above installation mode will do is to download the debian base image on vagrantcloud (this image

was made and uploaded by quarkslab11). Then it will install all IRMA dependencies requiring a good internet bandwith.

You could also import a prepackaged box:

$ vagrant box add <boxfile.box> --name <boxname>

3.4 Vagrant useful commands

Using Vagrant will allow you to use vagrant command to start, stop the virtual machine, you will also be able to develop on

your host computer and synchronize easily the code. It also simplify the virtual machine configuration process as its network

address, cpu, ram configuration is handled by vagrant.

$ vagrant ssh brain.irma # login through ssh
$ vagrant halt brain.irma # shutdown the machine
$ vagrant reload brain.irma # restart the machine
$ vagrant up brain.irma # start the machine
$ vagrant destroy brain.irma # delete the machine
$ vagrant rsync brain.irma # rsync host and guest (see environment file for setup)

3.5 IRMA Installation without vagrant

In last resort, you could also directly run a virtual image, but this time you will have to manually setup your virtual machine.

 Minimum Recommended

CPU 2 4

RAM 2048 4096

Default credential are vagrant/vagrant. To connect through ssh to the box, download vagrant ssh private key12 and try:

$ ssh vagrant@<vm-address> -i vagrant_private_key

11 See https://github.com/quarkslab/debian for details on base box creation.
12 https://raw.githubusercontent.com/mitchellh/vagrant/master/keys/vagrant

4 Integration of a Custom Analyzer

In IRMA we call analyzer a python module able to output data from a given source file. Turning an analyzer into a function-

al probe requires first to turn the analyzer module into an IRMA plugin. The benefit of using a plugin is that, on every celery

daemon restart, the plugins directory is scanned and all available plugins are loaded and turned into functional probes able to

receive files to analyze from the brain.

With this approach, the celery part is separated from the processing part and the analyzer could be easily used separately

from IRMA.

4.1 IRMA probe source tree

A typical probe install will have all IRMA related files placed into /opt/irma/irma-probe directory.

$ tree -L 1 /opt/irma/irma-probe/current
/opt/irma/irma-probe/current
├── config
├── lib
├── modules
├── probe
├── tools
└── requirements.txt

contains configuration files to connect to the brain

contains all the common python modules for frontend, brain and probe

contains all the analyzers plugins shipped with IRMA

contains the celery worker core file (tasks.py)

contains a module standalone test script

all python dependencies

4.2 Create a new plugin

Let’s now create a file type guesser named TypeGuesser. For that purpose we will use python-magic module. First of

all, under metadata directory create a new directory typeguesser. Turn this directory into a python module by creating an

empty file named __init__.py.

Note: you could also copy the skeleton directory example located under custom directory.

The source tree should look like this:

modules
├── metadata
│ └── typeguesser
│ └── __init__.py
 […]

Now it is time to create our plugin core file. Create a new python source file called plugin.py under typeguesser directo-

ry with the following content:

import sys
from datetime import datetime
from lib.common.utils import timestamp
from lib.plugins import PluginBase
from lib.plugin_result import PluginResult
from lib.irma.common.utils import IrmaProbeType
from lib.plugins import ModuleDependency

class TypeGuesserPlugin(PluginBase):

 # =================
 # plugin metadata
 # =================

 _plugin_name_ = "TypeGuesser"

 _plugin_author_ = "Me"
 _plugin_version_ = "1.0.0"
 _plugin_category_ = IrmaProbeType.metadata
 _plugin_dependencies_ = []

 # =============
 # constructor
 # =============

 def __init__(self):
 pass

 # ==================
 # probe interfaces
 # ==================

 def run(self, paths):
 # create a generic return dict
 ret = PluginResult(name=type(self).plugin_name,
 type=type(self).plugin_category,
 version=None)
 started = timestamp(datetime.utcnow())
 ret.results = "No results for now"
 stopped = timestamp(datetime.utcnow())
 ret.duration = stopped - started
 ret.status = 1
 return ret
As you could see the plugin part is mixed with the analyzer part, which is inlined in the run function as it consists only in this

line:

 ret.results = " No results for now"

(For more complex analyzer the plugin file could be separated from the analyzer file.)

Now let's try our new plugin by using the standalone test script:

$ cd /opt/irma/irma-probe/current/
$ venv/bin/python -m tools.run_module
usage: run_module.py [-h] [-v]
 {TypeGuesser,ComodoCAVL,StaticAnalyzer,ClamAV,VirusTotal,McAfeeVSCL}}
 filename [filename ...]
run_module.py: error: too few arguments

The new plugin is correctly detected. Now it is time to output something a bit more useful.

4.3 Minimal response

The output format expected for probe is json. In order to have all mandatory fields, a minimal response class named

PluginResult is used in our typeguesser example. The fields in questions are the following:

{
 'name' : str() with the name of the probe
 'type' : str() with the category of the probe
 'version' : str() with the version of the probe
 'platform' : str() with the platform on which the probe is executed
 'duration' : duration in seconds
 'status' : return code (< 0 is error, 0 : warning, 1 :success)
 'error' : None if no error (state > 0) else str() with the error
 'results' : Probe results
}

The results key could hold a dictionary with all the values that you want to send back to the frontend. The main goal of

the probe is to output as many values as it could.

Let see the output of our probe:

$ cd /opt/irma/irma-probe/current/
$ venv/bin/python -m tools.run_module TypeGuesser <random_file>
{'duration': 1.0967254638671875e-05,
 'error': None,
 'name': 'TypeGuesser',
 'platform': 'linux2',
 'results': 'No results for now',
 'status': 1,
 'type': 'metadata',
 'version': None}

4.4 Dependencies

IRMA contain some mechanisms to prevent loading a plugin if a dependency is not satisfied. Here are all the dependencies

checks available:

Class name Function

BinaryDependency Check for specified binary in the current path

ModuleDependency Check if specified module could be imported

FileDependency Check if the specified path exists and is a file

FolderDependency Check if the specified path exists and is a directory

PlatformDependency Check if we are running on specified platform

In order to handle correctly the dependency we will add a ModuleDependency. We will declare it in the plugin metadata by

adding the following lines:

 _plugin_name_ = "TypeGuesser"
 _plugin_author_ = "Me"
 _plugin_version_ = "1.0.0"
 _plugin_category_ = IrmaProbeType.metadata
 _plugin_description_ = "File type guesser based on python-magic"
 _plugin_dependencies_ = [
 ModuleDependency(
 'magic',
 help='See requirements.txt for needed dependencies'
),]

And load the dependency only at plugin initialization:

 def __init__(self):
 self.module = sys.modules['magic']

Now if we try to run our test tool:

$ cd /opt/irma/irma-probe/current/
$ venv/bin/python -m tools.run_module
[…]
WARNING:root: *** [plugin] Plugin failed to load: TypeGuesser miss dependencies: magic (Mo-
duleDependency). See requirements.txt for needed dependencies
[…]

As the dependency is not satisfied, the plugin is not loaded and the help message from the dependency handler is printed.

Let’s create a requirements.txt file to easily install our new plugin. Fill it with the following content:

python-magic>=0.4.6

And install it:

$ sudo pip install -r modules/metadata/typeguesser/requirements.txt

4.5 Output useful data

Last, use magic module to output the type of the file:

 ret.results = self.module.from_file(paths)

Now if we restart the probes application it should works:

$ sudo supervisorctl restart probe_app
probe_app: stopped
probe_app: started
$ sudo supervisorctl tail probe_app
[…]
WARNING:probe.tasks: *** [metadata] Plugin TypeGuesser successfully loaded
OK

probe/tasks.py is the celery task core file. It is in charge of scanning the plugin directory, creating a queue per registered

plugins and then to dispatch files received on all this queues to the respective analyzer. Restarting the probe application

restart the celery daemon based on this tasks.py file.

Now we could try to scan a file on the web interface and see what is happening with our new probe. If everything went fine

we should get a new result entry with our TypeGuesser plugin output.

4.6 Frontend Part

4.6.1 Results workflow

Here is an incomplete overview of the file processing workflow. The important thing to notice is that the probe json results

are stored as it is in the No-SQL database, but could be filtered before being displayed on any interfaces through the format-

ters. In this section we will see how to use them.

4.6.2 Formatter introduction

In frontend source directory you will find a similar plugin tree as the probe modules directory tree but under

frontend/helpers/formatters directory. It should look like:

frontend
├── helpers
│ └── formatters
│ ├── antivirus
│ └── external
│ └── virustotal
[…]

scanid, file
(http post)

results
(json)

scanid
(http get)

results
(json)

file
(binary)

Probe
analyzes file

Frontend
receives file

Frontend
stores in NoSQL

Frontend
formats NoSQL

results

WebUI
asks for results

WebUI
submits file

WebUI
receives results

Every probe that needs special formatting could have a formatter. Each formatter plugin will declare what plugin it can

handle. For example the default antivirus formatter handles all probes with type IrmaProbeType.antivirus:

 @staticmethod
 def can_handle_results(raw_result):
 return raw_result.get('type', None) == IrmaProbeType.antivirus

You can also have a formatter that just handles the result of one specific probe. For example VirusTotal formatter handle

only results from the VirusTotal probe:

 @staticmethod
 def can_handle_results(raw_result):
 expected_name = VirusTotalFormatterPlugin.plugin_name
 expected_category = VirusTotalFormatterPlugin.plugin_category
 return raw_result.get('type', None) == expected_category and \
 raw_result.get('name', None) == expected_name

The main method of formatter plugin is the format method that transforms the probe raw results into filtered results (that still

should have all json keys seen in chapter 4.3):

 @staticmethod
 def format(raw_result):
 […]
 return raw_result

You could change all values but mandatory keys should still be present in the returned result dict.

4.6.3 Formatter example

For example the VirusTotal formatter plugin will take the raw results from VirusTotal probe and only output the ratio

of detection.

 @staticmethod
 def format(raw_result):
 status = raw_result.get('status', -1)
 vt_result = raw_result.get('results', {})
 if status != -1:
 av_result = vt_result.get('results', {})
 if status == 1:
 # get ratios from virustotal results
 nb_detect = av_result.get('positives', 0)
 nb_total = av_result.get('total', 0)
 raw_result['results'] = "detected by {0}/{1}" \
 "".format(nb_detect, nb_total)

4.6.4 API documentation

The API documention is reachable at http://<irma_server_address>/swagger. Using swagger allows you to easily try the API.

The web interface and the command line client both use the API.

5 Conclusion and Future Work

On the frontend part, we have planned to add search methods on probe results in order to get more information from files

already present in database.

On the analysis part (brain), the next big feature to come is a probe dispatcher that will be in charge of chaining probe ana-

lyzes. For example, there is no point in sending a non PE file to the static analysis, but it could be valuable to resend a

packed binary to the antivirus engines after unpacking.

If you intend to create your own probe, you can send it to us and we will happily integrate it in the default plugin list shipped

with IRMA. If you also want to contribute to the whole project you are welcomed.

Acknowledgments

This project is co-funded by the following actors: CEA DAM, DCNS, GOVCERT.LU (governmental CERT of Luxem-

bourg), Airbus Group, QuarksLab and Orange Group IS&T. We would like to thank all the contributors, people who have

submitted patches, reported bugs, helped answer newbie questions, and generally made IRMA that much better.

