

Quantum Computing

What does really mean for Security people?

For Excellence in Electronics

Who I am

- More than 25 years of experience in Cybersecurity
- "So called" Expert in IT and IoT security
- Former manager of the application security of a Fortune 50 company
- (Old?)Engineer in electronics and computing
- Speaker & trainer (BlackHat, HITB, Tedx...)
- Head of offensiv & defensic R&D inside S3
- Hardsploit project, Quantum computing, DIY Bio Hacking and more...

Back to our subject

- Quantum Computing ?
- My vision : How to hack the entire IT industry with one particles behavior
- Our agenda for this talk : The journey of a security guy in quantum computing world ... without any PhD

Computing history in 1 slide

Trust me : Computing's Hardware have already change over the age !

12/04/2018

Computer hardware already evolved in past!

- Some People would seem to not accept that there could be a evolution of hardware that supports our « computing" needs… They could be (really) wrong !
- May be it will be Quantum computing, maybe DNA based computing or something else.
- But Computing's hardware could change over the age.

What is Quantum Computing?

A Quantum computer is a machine that performs calculations bases on the laws of Quantum Mechanics

Where did this idea come from?

6

Investments in the domain are huge

7

Quantum Computing?

·A QUANTUM SYSTEM REPLACES CLASSICAL BITS WITH QUANTUM QUBITS

· QUBITS FOLLOW THE SUPERPOSITION PRINCIPLE AND CAN EXIST AS"O" AND "1" AT THE SAME TIME

·USING QUBITS INSTEAD OF BITS, WITH A SINGLE IMPUT ONE COULD PROCESS ALL THE POSSIBLE COMBINATIONS OF "O" AND "1"'S IN A STRING AT THE SAME TIME

·QUANTUM ALGORITMS USING THIS ABILITY COULD SOLVE CERTAIN TYPES OF PROBLEMS MUCH, MUCH FASTER THAN ANY CLASSICAL CONPUTER

WTF: 1 and 0 @ the same time !?

How it's possible?

Duality of wave and particule behavior

Everythings, @ atomic level could behave as a Wave and a particle?

12/04/2018

Wave & Particles behavior experiments (1/3)

- As a IT security consultant / hacker, how to check That ?
- Make , @ home, a double slit experimentBut with hacker style ⁽²⁾

- Step 1 : use a laser point against a wall
 - You see a spot !
 - (photon = particule behaviour)

Wave & Particles behavior experiments (2/3)

Step 2 : send the (same!) laser beam through a double slit

Wave & Particles behavior experiments (3/3)

- Step 2 : You will see an interférence pattern (witch is a wave existance proof)
- Photons behave at the same time as a particules (step 1) and as a wave (Step2) ...
- and this help some guys to design hardware qubit to make a quantum computer : a powerfull new tool for computing !

Many ways to create the Hardware of Qubits

Superconducting loops

Trapped ions

Electrically charged atoms, or ions, have guantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

A resistance-free current oscillates back

and forth around a circuit loop. An injected

microwave signal excites the current into

Longevity (seconds) 0.00005

Logic success rate 99.4%

Number entangled 9

super-position states.

Longevity (seconds) >1000 Logic success rate 99.9%

Number entangled 14

Company support Google, IBM, Quantum Circuits

Pros Fast working. Build on existing semiconductor industry.

Very stable. Highest achieved gate

Slow operation. Many lasers are needed.

Cons Cons Collapse easily and must be kept cold.

Company support

ion0

Pros

Cons Cons

fidelities.

Topological gubits

Longevity (seconds) 0.03 Logic success rate -99%

can encode quantum information.

Longevity (seconds) N/A

Logic success rate N/A Number entangled N/A

These "artificial atoms" are made by

adding an electron to a small piece of pure

silicon. Microwaves control the electron's

Number entangled 2

quantum state.

Company support Microsoft, Rell Labs C) Pros

Cons.

Existence not yet confirmed.

Stable. Build on existing semiconductor

Only a few entangled. Must be kept cold.

Greatly reduce errors.

Company support

Intel

(1) Pros

industry. Cons.

12/04/2018

3 Making measurements on a flux gubit

SQUID

oubit

A scanning electron micrograph (left) and circuit diagram of a flux pubit at Delft. The current circulating in the pubit (shown in red) is measured using a superconducting quantum interference device (SQUID). This device, which is shown in blue, is a loop that contains two more Josephson junctions.

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths.

More Qubit = More Exponential computing power

INNOVATION THROUGH QUANTUM SUPREMACY

Quantum Computers: They are coming...

The IBM Q Lab. Image: IBM Resea

BIBM Just Made a 17 Qubit Quantum Processor, Its Most **Powerful One Yet**

Maradith Rutland Bouer

Technology Review

Login / Create an account Search Q Feerba

Intelligent Machines

MIT

IBM Raises the Bar with a 50-Qubit Quantum Computer

Home | News | Physics | Technology

DAILY NEWS 6 March 2018

Google's 72-qubit chip is the largest yet

e built the most sophisticated guantum naling progress toward a powerful new a information.

vember 10, 2017

Application?

Quantum supremacy: a snapshot of
applicationsESTABLISHEDEMERGINGChemistryOptimizationMaterials scienceBig dataPrecision measurementMachine learning

Cryptography

Climate modelling

Quantum Computers & Processors: actual Form factor?

S

Quantum Computers : New way of programming

What does the code of a quantum computer program look like?

- New type of programming (weird one)
- and completly new way of designing any algorithm (Disconnecting your « classical brain » for a « quantum brain » is hard ...trust me !)
- Juste one example: In Quantum bit world, cloning (=make a simple copy of the value) of a Qbit is not possible (decoherence of quantum state !)

New programming IDE, new logical gate to understand...

Programming a QC in real life !

-> Demo 101

https://quantumexperience.ng.bluemix.net/qx

Quantum Computers: a threat for security ?

Juste 1 threat example

Among other things... Classical Crypto defense issue on the rise !

How Secure Will Our Current Cryptography Be When Full Scale Quantum Computing Arrives?

Algorithm	Key Length	Security level (Conventional Computer)	Security level (Quantum Computer)
RSA-1024	1024 bits	80 bits	~0 bits
RSA-2048	2048 bits	112 bits	~0 bits
ECC-256	256 bits	128 bits	~0 bits
ECC-384	384 bits	192 bits	~0 bits
AES-128	128 bits	128 bits	64 bits
AES-256	256 bits	256 bits	128 bits

Why ? -> Shor's algorithm

Number Factorization: Shor Alg.

Shor's algorithm

Quantum mecanic could improve our defenses...

- But Quantum mecanics could also help improving
- the security defense
- Quantum Cryptography or QKD
- Quantum Key Distribution

Quantum Safe Cryptography Comparison

'Post-quantum' cryptography

- Security relies on the hardness of certain computational problems
- Vulnerable to advances in cryptoanalysis and computing power
- No security proof

Quantum cryptography

- Security is based on some quantum property
- ✓ Typically no computational assumptions and therefore secure against quantum attacks
- Conceptual security guaranteed by quantum physics

What option delivers better security in practice?

BB84 protocol will save the world... Or not

How to attack this?

Spectral attack

- Each polarization state can be created using its own laser photo diode
- For Eve, instead of measuring the polzarization (**thus altering the photon state**), she can just use spectral analysis to recover the information:

C.K., P. Zarda,

M. Halder, H.

Weinfurter

Conclusion

- Quantum Computing is a bit a « disruptive » subject for Security world
- Impacts of this new technology reminds me the result of CyberGrand Challenge where IA code surpass main reverse engineering specialist or pentesters to find and correct vulnerability

But as usual, This techno will be use for good and evil (be prepared)

Questions?

▶ We are hiring ... a lot ! ;-)

Good hacking for all CTF teams

Contact : @meallainyann / y.allain AT serma.com

