
�):�:�����������)���������
	�#�#��)�)�$%��)���������!������

�)����)�����������������"����

�)����� �)��)���
�����)�� �(�����

������)�)�
���������!��:$�

Alibaba Security �



• Xiaolong Bai
• Alibaba Security Engineer
• Ph.D. graduated from Tsinghua University
• Published papers on the top 4: S&P, Usenix Security, CCS, NDSS
• Twitter, Weibo, Github: bxl1989

•Min (Spark) Zheng
• Alibaba Security Expert
• Ph.D. graduated from The CUHK
• Twitter@SparkZheng Weibo@��spark

Alibaba Security �

Self Introduction



Agenda

• Overview
• Drivers in Kernel
• Userland Perspective

• New Vulns in Drivers on macOS
• Two new vulnerabilities
• New exploitation strategies
• Privilege escalation on the latest macOS

• Obstacles when analyzing Apple drivers
• Ryuk: a new tool to analyze Apple drivers
• Design
• Effects
• Implementation
• Benefits

Alibaba Security �



Overview

• Every driver is a kernel extension (.kext) sharing the same space 
with the kernel
• System daemon kextd is responsible for loading and unloading 

drivers
• Location of driver binaries:
• On macOS: /System/Library/Extensions
• On iOS: integrated with kernel in kernelcache

Alibaba Security �



Drivers in Kernel

• Programmed in C or C++
• Info.plist: configuration file in drivers for their property and usage

Kernel libs used in the driver

Class name to provide service to userspace

Class name of the driver

Alibaba Security �



Drivers in Kernel

• Kernel APIs (KPI): APIs can be used by drivers to live in kernel
• /System/Library/Frameworks/Kernel.framework/Resources/SupportedKPI

s-all-archs.txt (on macOS)
• Basic KPI Modules:
• com.apple.kpi.iokit: For programming drivers, Apple provides an open-

source framework called iokit, which includes basic driver classes
• com.apple.kpi.libkern: a restricted c++ runtime lib in the kernel

• excluded features—exceptions, multiple inheritance, templates
• an enhanced runtime typing system: every class has an OSMetaClass object which 

describes the class’s name, size, parent class, etc.

Alibaba Security �



Drivers in Kernel

• A sample driver
Header File

Code File

Alibaba Security �



Drivers in Kernel

• A sample driver
Header File

Code File

Parent of all drivers
Declare Con/Destructors

Callback methods of IOService
to be overriden by the driver

Auto Gen Con/Destructors

Class name of the driver

Alibaba Security �



Drivers in Kernel

• In order to provide service to programs in userspace, drivers need 
to implement userclients
• Userclient: Kernel objects to provide service to programs in 

userspace
• Create in two ways:

Info.plist Callback Method of Driver

Alibaba Security �



Drivers in Kernel

• A sample UserClient

Unique callbacks of UserClient

Alibaba Security ��



Drivers in Kernel

• IOUserClient provides services through several callback methods:
• externalMethod: Provide methods that can be called in userspace
• clientMemoryForType: Share memory with programs in userspace
• registerNotificationPort: When userspace register to receive notification
• clientClose: When userspace program close connection with the 

userclient
• clientDied: When program in userspace connected to the userclient is 

dead
• getTargetAndMethodForIndex: Similar to externalMethod, but old fashion
• getAsyncTargetAndMethodForIndex: Similar to above, but async
• getTargetAndTrapForIndex: Similar to externalMethod, but seldom used

Alibaba Security ��



Drivers in Kernel

• externalMethod: Callback to provide methods to userspace
program
• IOReturn IOUserClient::externalMethod(uint32_t selector, 

IOExternalMethodArguments *arguments, 
IOExternalMethodDispatch *dispatch, 
OSObject *target, void *reference);

• selector: to select method in userclient
• arguments: arguments passed to the selected method
• dispatch: a struct representing the method to be called
• target: the target userclient for the method to be called on
• reference: reference to send results back to userspace program

Alibaba Security ��



Userland Perspective

• Apple provides IOKit.framework for programs in user space to 
interact with kernel drivers
• Though public, explicit invocation in iOS will be rejected by App Store

• Important APIs in IOKit.framework:
• IOServiceGetMatchingService, IOServiceGetMatchingServices
• IOServiceOpen, IOServiceClose
• IOConnectCall…Method, IOConnectCallAsync…Method
• IORegistryEntryCreateCFProperty, IORegistryEntrySetCFProperty
• IOConnectMapMemory, IOConnectUnmapMemory
• IOConnectSetNotificationPort

Alibaba Security ��



Userland Perspective

• The calling sequence to interact with a driver
IOServiceGetMatchingService à Get the service of the the target driver
IORegistryEntryCreateCFProperty à Get the driver’s property
IORegistryEntrySetCFProperty à Set the driver’s property
IOServiceOpen à Connect to the target driver 
IOConnectCall…Method à Call the driver’s method through the connection
IOConnectCallAsync…Method à Call method, asynchronously
IOConnectMapMemory à Get a memory mapped by the driver
IOConnectSetNotificationPort à Prepare to receive notification from driver
IOServiceClose à Close the connection

Alibaba Security ��



Userland Perspective

• Sample code of using service of IOKit driver

Get the service of IOFireWireLocalNode

Set property hello’s value as hello

Connect to the target service, open IOFireWireUserClient

Call the driver’s method, through the connection

Close connection with the target driver

Alibaba Security ��



Userland Perspective

• APIs in IOKit.framework are wrappers of Mach Traps (kinda syscall) , 
which are generated by Mach Interface Generator (MIG) and 
eventually call into callback methods implemented by userclients

API

Mach trap

MIG generated
implementation

Real Implementation
of Mach trap in kernel

Callback methods
of userclients

IOConnectCallMethod

io_connect_method

_Xio_connect_method

is_io_connect_method

IOUserClient::externalMethod

Userspace
Kernel

Alibaba Security ��



Userland Perspective

• Despite of strict sandbox restriction, some userclients in IOKit
drivers can still be accessed by sandboxed apps on iOS. 
• Through experiments, we confirm these available userclients and 

their correponding IOKit device driver names on iOS 11
• IOHIDLibUserClient: AppleSPUHIDDevice, AppleCSHTDCodecMikey
• IOMobileFramebufferUserClient: AppleCLCD
• IOSurfaceAcceleratorClient: AppleM2ScalerCSCDriver
• AppleJPEGDriverUserClient: AppleJPEGDrive
• IOAccelDevice2, IOAccelSharedUserClient2, IOAccelCommandQueue2: 

AGXAccelerator
• AppleKeyStoreUserClient: AppleKeyStore
• IOSurfaceSendRight, IOSurfaceRootUserClient: IOSurfaceRoot

Alibaba Security ��



New Vulns in Drivers on macOS – Current Secure Status

• Though within kernel, drivers are always blamed for poor quality, 
which make them frequently be used to exploit the kernel

• Vulns in drivers used in JailBreaks:
• 11 (v0rtex | electra): IOSurfaceRoot (CVE-2017-13861)
• 9 (pangu): IOMobileFrameBuffer (CVE-2016-4654)
• 8 (TaiG): IOHIDFamily (CVE-2015-5774)
• 7 (pangu): AppleKeyStore (CVE-2014-4407)

•With the help of Ryuk, we found and confirmed some new vulns on 
macOS

Alibaba Security ��



New Vulns in Drivers on macOS – New Vuln 1

• Information Leakage due to uninitialized stack variable in 
IOFirewireFamily driver (CVE-2017-7119) – To defeat kaslr

Alibaba Security ��



New Vulns in Drivers on macOS – New Vuln 1

• Information Leakage due to uninitialized stack variable in 
IOFirewireFamily driver (CVE-2017-7119) – To defeat kaslr

Alibaba Security ��



New Vulns in Drivers on macOS – New Vuln 1

• Information Leakage due to uninitialized stack variable in 
IOFirewireFamily driver (CVE-2017-7119) – To defeat kaslr

Alibaba Security ��



New Vulns in Drivers on macOS – New Vuln 1

• Information Leakage due to uninitialized stack variable in 
IOFirewireFamily driver (CVE-2017-7119) – To defeat kaslr

Kernel slide = 0x4ebc0b6-0x8bc0b6 = 0x4600000
Though outChannelHandle is only 32bit, but enough since
the high 32bit is always 0xffffff80 here

Alibaba Security ��



• CVE-2018-4135: UAF in 
IOFirewireFamily driver –
To control PC

• There is no locking or 
serialization when 
releasing and using a 
member variable

• fMem is a member of class 
IOFWUserReadCommand

New Vulns in Drivers on macOS – New Vuln 2

Alibaba Security ��



• CVE-2018-4135: UAF in 
IOFirewireFamily driver –
To control PC

• Exploit: race two threads 
to call this function on the 
same userclient

New Vulns in Drivers on macOS – New Vuln 2

Alibaba Security ��



• CVE-2018-4135: UAF in 
IOFirewireFamily driver –
To control PC

• Exploit: race two threads 
to call this function on the 
same userclient

New Vulns in Drivers on macOS – New Vuln 2

Alibaba Security ��



New Vulns in Drivers on macOS – New EXP strategies: Heap Spray

• A new heap spray strategy utilizing OSUnserializeXML on macOS
• io_registry_entry_set_properties: set properties of device, eventually call 

is_io_registry_entry_set_properties in kernel

• Some drivers keep any properties set by userspace, e.g., IOHIDEventService
• Pros: the sprayed data can be read; the head of sprayed data is controllable

Alibaba Security ��



New Vulns in Drivers on macOS – New EXP strategies: ROP

• After controlling PC, we can gain privilege through ROP chain
• ROP chain (most employed from tpwn)

Stack Pivot _current_proc _proc_ucred _posix_cred_get _bzero _thread_exception_return

Get ptr to 
struct proc of 

current process

Get ucred from 
struct proc, i.e., 

process 
owner's 
identity

Get ptr to struct
cr_posix

Exit kernel, return to 
userspace

Alibaba Security ��



New Vulns in Drivers on macOS – New EXP strategies: ROP

• After controlling PC, we can gain privilege through ROP chain
• Key step: Stack Pivot

In tpwn (on 10.10)

In rootsh (on 10.11)

New

Alibaba Security ��



New Vulns in Drivers on macOS – New EXP strategies: ROP

• After controlling PC, we can gain privilege through ROP chain
• Key step: Stack Pivot

New

Alibaba Security ��

Addr of Gadget P2
New Stack: RAX+0x50

RAX
Addr of Gadget “NOP; RET;”

_current_proc, MOV RDI, RAX

RAX (Controlled or Known)

RAX+0x30

Gadget
P1

Gadget
P2

_proc_ucred, MOV RDI, RAX
_posix_cred_get, MOV RDI, RAX

_bzero
_thread_exception_return

RAX+0x40: New Stack Start
RAX+0x38

RAX+0x8



New Vulns in Drivers on macOS – Whole EXP Process

Alibaba Security ��

high space of heap 
possessed by heap spray

Heap Spray

Trigger Vuln

Jmp to Gadget P1

Run ROP chain

Control PC

Addr of Gadget P2
New Stack: RAX+0x50

RAX
Addr of Gadget “NOP; RET;”

_current_proc, MOV RDI, RAX
_proc_ucred, MOV RDI, RAX

_posix_cred_get, MOV RDI, RAX
_bzero

_thread_exception_return

Privilege Escalation



New Vulns in Drivers on macOS – Privilege Escalation

• Privilege escalation on the latest macOS 
On macOS 10.13

On macOS 10.13.2

Alibaba Security ��

Bugs fixed on macOS 10.13.4



Analyze Apple Drivers: Obstacles

• But! Analyzing macOS and iOS kernel drivers is not easy!
• Closed-source
• Programmed in C++
• Lack of Symbols (mainly for iOS)

• Let’s first look at how drivers’ binary code looks like in IDA pro

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable

Many 
symbols 
are kept

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable

Event better, we 
have symbols of 

vtables and know 
where they are

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable

Even sMethods of 
userclients have 

symbols

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable

Functions have 
meaningful names 
(for both internal 

and externa). 

These names can 
be demangled to 

know the 
argument types

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable

Decompiled code is 
partially human-

readable 

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable, but not suitable for manual review and static analysis 

Types of object 
variables are 

unknown 

Classes’ vtable
function pointers are 
used everywhere, IDA 
pro cannot recognize.

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – macOS
• Readable, but not suitable for manual review and static analysis 

No structures for 
classes

Class sizes are 
unknown

Member variables 
cannot be recognized 

by IDA pro

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – iOS
• Messy! Nothing useful there! Unreadable, not to mention further 

analysis

Functions do not have symbols

Function names are all 
meaningless “sub_”

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – iOS
• Messy! Nothing readable, not to mention further analysis

There is no symbol for 
vtables

No clue to know where 
vtables are

No entry can be found

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – iOS
• Messy! Nothing readable, not to mention further analysis

Functions 
cannot be 
recognized 
by IDA pro 

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – iOS
• Messy! Nothing readable, not to mention further analysis

Function names are meaningless

Vtable function pointers are not 
recognized

Variables and arguments do not 
have any type information

Alibaba Security ��



Analyze Apple Drivers: Obstacles

• How does a driver’s binary look like in IDA pro – iOS
• Messy! Nothing readable, not to mention further analysis

No structures for classes

Class sizes are unknown

Member variables cannot be 
recognized by IDA pro

Alibaba Security ��



Analyze Apple Drivers: A New Tool

• Ryuk: a new tool to recover symbols and solve object-oriented 
features in macOS and iOS drivers
• Ryuk: character in the comics series Death Note, who loves eating apples.
• Implemented as IDA pro python script

Alibaba Security ��



Ryuk: Design

• Features of Ryuk:
• Class recognition and construction
• Vtable recognition and construction
• Recover function names
• Resolve variable and argument types
• UI support 
• …

Alibaba Security ��



Ryuk: Effects

• Class Recognition and Construction

Alibaba Security ��

Size Class Name



Ryuk: Effects

• Vtable recognition and construction

Alibaba Security ��



Ryuk: Effects

• Vtable recognition and construction

Alibaba Security ��



Ryuk: Effects

• Recover function names

Alibaba Security ��



Ryuk: Effects

• Recover function names, resolve variable and argument types, 
function pointer and member variable recognition

Alibaba Security ��



Ryuk: Effects

• UI support

Alibaba Security ��



Ryuk: Effects

• UI support

Alibaba Security ��



Ryuk: Effects

• UI support

Alibaba Security ��



Ryuk: Implementation

• 1. Class recognition and construction 
• Functions in __mod_init_func section register all classes

Alibaba Security ��

macOS

iOS



Ryuk: Implementation

• 1. Class recognition and construction
• Functions in __mod_init_func section register all classes

macOS

iOS

Class Name

Class Size

Parent Class Info

Alibaba Security ��

*Note: multiple inheritance is excluded in libkern

Registration



Ryuk: Implementation

• 1. Class recognition and construction
• Functions in __mod_init_func section register all classes 

Alibaba Security ��

macOS

iOS

Class Name

Class Size

Parent Class Info

*Note: multiple inheritance is excluded in libkern



Ryuk: Implementation

• 1. Class recognition and construction: Effect
• Structures representing classes are created

Alibaba Security ��



Ryuk: Implementation

• 2. Vtable recognition and construction
• On macOS, vtables have symbols and known addresses, no need to find

Alibaba Security ��



Ryuk: Implementation

• 2. Vtable recognition and construction
• On iOS, step 1: adjust the __const section

• Vtables are in __const section, but IDA pro makes it disappear

Alibaba Security ��



Ryuk: Implementation

• 2. Vtable recognition and construction
• On iOS, step 2: find address of class’s metaclass object

• Functions in __mod_init_func section are parsed again

Alibaba Security ��

Addrss of class’s metaclass object



Ryuk: Implementation

• 2. Vtable recognition and construction
• On iOS, step 3: Get xrefs to metaclass object

• The xref in const section nears the vtable

Alibaba Security ��



Ryuk: Implementation

• 2. Vtable recognition and construction
• On iOS, step 3: Get xrefs to metaclass object 

• Data before vtables is in some specific format
Xref to metaclass object
Xref to parent’s metaclass
Vtable start preceeding
by 2 zero

Alibaba Security ��



Ryuk: Implementation

• 2. Vtable recognition and construction: Effects
• Create structures representing vtables and set the first member of classes 

as an pointer to their vtable

Alibaba Security ��



Ryuk: Implementation

• 3. Recover function names (virtual functions on iOS)
• Most classes inherit from basic classes in iokit framework like IOService, OSObject, 

etc., which have meaningful function names
• Replace the class name in the overriden virtual functions

Overriden
virtual 
functions

Alibaba Security ��

IOSurfaceRoot::
getMetaCalss



Ryuk: Implementation

• 3. Recover function names (virtual functions on iOS): Effects

Alibaba Security ��



Ryuk: Implementation

• 4. Resolve variable and argument types
• Step 1: Figure out the creation of variables

Allocation

Cast

Allocation

Constructor

Alibaba Security ��



Ryuk: Implementation

• 4. Resolve variable and argument types
• Step 2: Variable types are decided

Alibaba Security ��



Ryuk: Implementation

• 5. UI support 
• Purposes:
• Jump to virtual function’s (or children’s) implementation when double-

click on function pointers
• Keep the name and type consistency between function pointer and their 

implementation
• Implementation:
• Register action to double-click events
• Register action to key events
• Register action to name change events
• Register action to type change events

Alibaba Security ��



Ryuk: Benefits

• For manual review:
• Function names are meaningful
• Function pointers are recognized
• Member variable are recognized
• Variable types are known
• You can jump to virtual function’s implementation from their pointers 

with just a double-click
• For static analysis:
• Variable types are resolved 
• Call targets of function pointers are known
• Further CFG can be easily constructed

Alibaba Security ��



• Explanation and illustration of 2 new CVEs in macOS drivers
• Illustration of whole exploit chain of privilege escalation on macOS
• Innovative exploitation techniques on latest macOS
• Ryuk: a new tool for assisting the analysis of macOS and iOS drivers
•Most important! 
• https://github.com/bxl1989/Ryuk

Alibaba Security ��

Conclusions



Thanks

Alibaba Security ��


