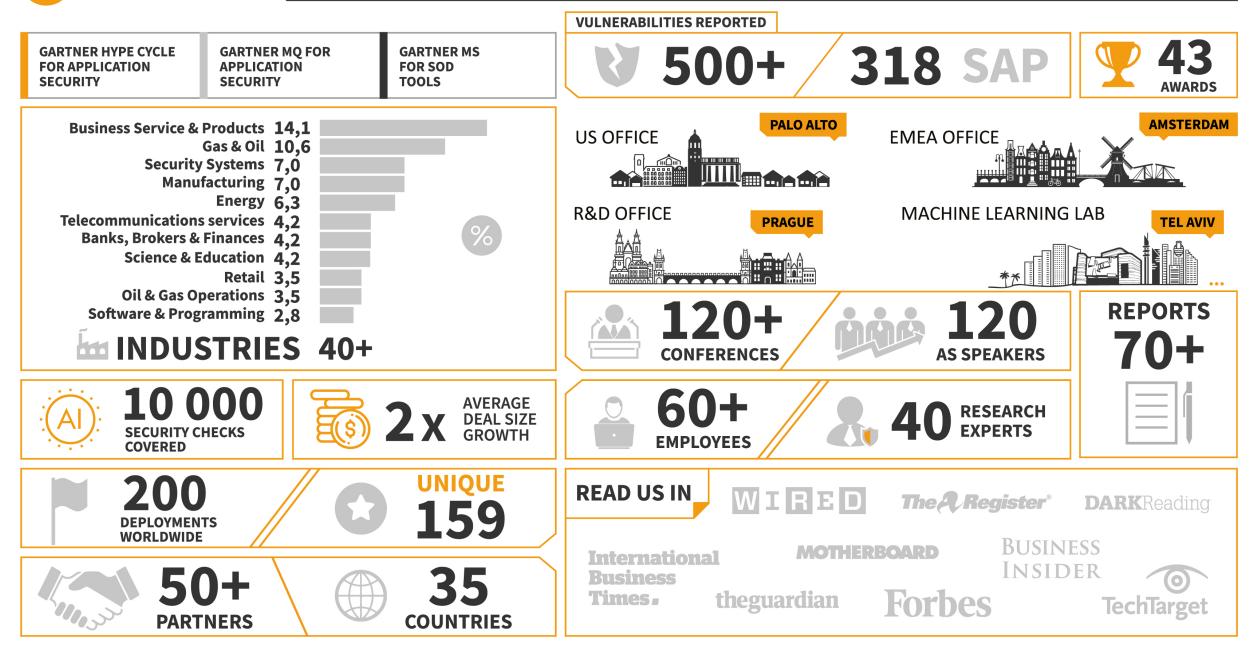


Machine Learning

for User Behavior Anomaly Detection

EUGENE NEYOLOV, HEAD OF R&D



ERPScan

AUTHOR

Eugene Neyolov

HEAD OF R&D

Security engineer and analyst leading applied research projects in security monitoring, threat detection and user behavior analytics.

Current Interests

- Building products for
- Cyber security with
- Data science and
- Hype

OUTLINE

• Why

- ERP Security
- User Behavior Analytics
- Machine Learning

• What

- Static Anomalies
- Temporal Anomalies

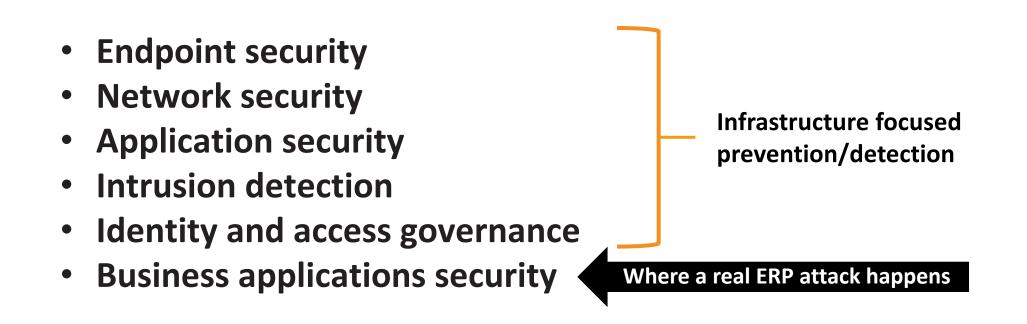
• How

- Data Preparation
- Security Analytics
- Security Data Science
- Machine Learning
- \circ Anomaly Detection

ERP Security

ERP SECURITY

Blind Spot



ERP SECURITY

Sweet Target

Enterprises

HR Management Financial Accounting Sales and Distribution Materials Management Quality Management Production Planning Plant Maintenance Supply Chains

. . .

User Behavior Analytics

USER BEHAVIOR ANALYTICS

Why?

• Legacy threat models

 \circ $\,$ Users are the easiest attack vector $\,$

Legacy incident monitoring

Infrastructure security focused analysis

Legacy security alerts analysis

No business context enrichment

USER BEHAVIOR ANALYTICS

What?

- User security monitoring
- User-focused alert prioritization
- Advanced context enrichment
- User behavior vs. fraud analysis
 - $\circ~$ UBA is about facts in the technical context
 - Developer must work with development server A but have accessed server B owned by the finance department
 - o Fraud is about intentions in a business context
 - Salesman signs a contract with company A and not company B, because A is managed by a friend

USER BEHAVIOR ANALYTICS

How?

- Create a user-centered threat model
- Identify user-related data sources
- Build a user behavior baseline
- ???
- PROFIT!!!

Machine Learning

Why?

- Escape postmortem rules and signatures
- Self-adjusted dynamic behavior patterns
- Find hidden patterns in user behavior

What?

• ML tasks

- \circ Clustering
- \circ Regression
- \circ Classification
- Anomaly detection
- o ...

Learning patterns from data

- o Supervised learning with labeled data
- Unsupervised learning without labeled data
- Semi-supervised learning with tips from data or humans
- Reinforcement learning with a performance feedback loop

o ...

What?

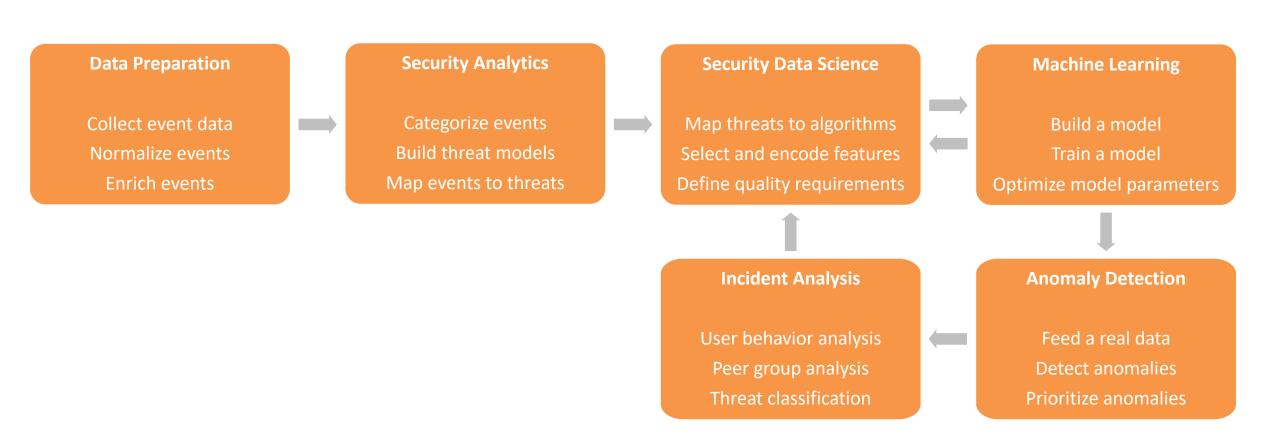
• ML model

- \circ Codebase
- Features structure
- Model parameters (learned)
- Model hyperparameters (architecture)

• ML features

- Categorical (classes)
- Statistical (counts)
- Empirical (facts)
- \circ Continuous
- Binary
- 0 ...

How?



Data Preparation

DATA SOURCES

- APIs
- Log files
- Databases
- Log archives
- Log management tools
- Security monitoring tools
- ...

DATA FORMATS

- Syslog
- Custom mess
- Random key-value
- Proprietary key-value (CEF, LEEF, ...)
- Other terrible options (JSON, CSV, ...)

DATA NORMALIZATION

Understand that mess

o When, Who, did What, Where from, Where to, on What

• Bring all formats to the same convention

- Implement a built-in convertor for each format as a part of the solution (inside)
- Create a separate convertor tool and treat it as the data source for the model (outside)
- o Build event storage that allows event fields mapping, like Splunk or ELK (infrastructure)

• Find duplicates and missing fields

- $\circ~$ One action generates several entries
- System doesn't identify itself in its own logs
- User's name is recorded, but not its IP (or vice versa)

DATA NORMALIZATION: BEFORE

SAP Security Audit Log ABAP

2AU520180313113209000030400001D1nsalab SAP* 0001F&0 SAPMSSY1 nsalab 2AUK20180313113209000030400001D1nsalab SAP* SAPMSSY1 0001SLO6&SAPLSLO6&RSAU READ FILE nsalab 2AU220180313114609002315800004D4MacBook-SAP* SESSION MANAGER SAPMSYST MacBook-Pro-Nursulta2AU120180313114703002315800004D4MacBook-0001A&1 SAP* SESSION_MANAGER SAPMSYST 0011A&0&P MacBook-Pro-Nursulta2AUW20180313114703002315800004D4MacBook-SAP* SESSION MANAGER RSRZLLGO 0011RSRZLLG0& MacBook-Pro-Nursulta2AUW20180313114703002315800004D4MacBook-SAP* SESSION MANAGER RSRZLLGO ACTUAL MacBook-Pro-0011RSRZLLG0 ACTUAL& Nursulta2AU320180313115152002316200008D8MacBook-SAP* SE16 SAPLSMTR_NAVIGATION MacBook-Pro-Nursulta2DU920180313115155002316200008D8MacBook-**0011SE16** SAP* **SE16** SAPLSETB 0011USR02&02&passed MacBook-Pro-Nursulta

DATA NORMALIZATION: AFTER

SAP Security Audit Log ABAP

Time	Title	User	Device	Action	Context 1	Context 2	Context 3
3/13/18 11:32	RFC/CPIC Logon Successful	SAP*	nsalab	AU5	F	0	
3/13/18 11:32	Successful RFC Call	SAP*	nsalab	AUK	SLO6	SAPLSLO6	RSAU_READ_FILE
3/13/18 11:46	Logon Failed	SAP*	MacBook-Pro-Nursulta	AU2	А	1	
3/13/18 11:47	Logon Successful	SAP*	MacBook-Pro-Nursulta	AU1	А	0	Р
3/13/18 11:51	Transaction Started	SAP*	MacBook-Pro-Nursulta	AU3	SE16		
3/13/18 11:51	Read Table	SAP*	MacBook-Pro-Nursulta	DU9	USR02	2	passed

Security Analytics

ERP SECURITY LOGGING

Common business application logging

- \circ Event time
- \circ Event type
- \circ Server info
- \circ User info
- 0 ...

ERP SECURITY LOGGING

• SAP tracks 50+ fields across 30+ log formats

- SAP system ID (business entity)
- client number (*company sandbox inside a system*)
- names of processes, transactions, programs or functions (*runtime data*)
- o affected user, file, document, table, program or system (context data)
- o amount of inbound and outbound traffic (*network data*)
- o severity, outcome and error messages (status data)
- device forwarded the event (*infrastructure data*)
- o ...

ERP SECURITY LOGGING

SAP Security Audit Log ABAP

• Short list of important fields

- \circ Time
- Event type, class
- System type (log source)
- System ID, server hostname and IP
- User name, device hostname and IP
- Executed program name (transaction, report, remote call)

THREAT MODEL

Use Cases

10+ Categories (why)

o Data Exfiltration, Account Compromise, Regular Access Abuse, Privileged Access Abuse, ...

30+ Classes (what)

o Data Transfer, Account Sharing, Password Attack, Privilege Escalation, Lateral Movement, ...

100+ Scenarios (how)

• Login from multiple hosts, User upgrades its own privileges, Cover tracks via user deletion, ...

Security Data Science

ANOMALY TYPES

• Static anomalies

- Unusual action (new or rare event)
- Unusual context (server, device, ...)

0 ...

• Temporal anomalies

- \circ Unusual time
- Unexpected event
- Huge events volume

0 ...

ANOMALIES VS. THREATS

- Many anomalies are not malicious
- Anomalies are statistical deviations
- Big infrastructures always have anomalies

ANOMALIES VS. THREATS

Matrix Example

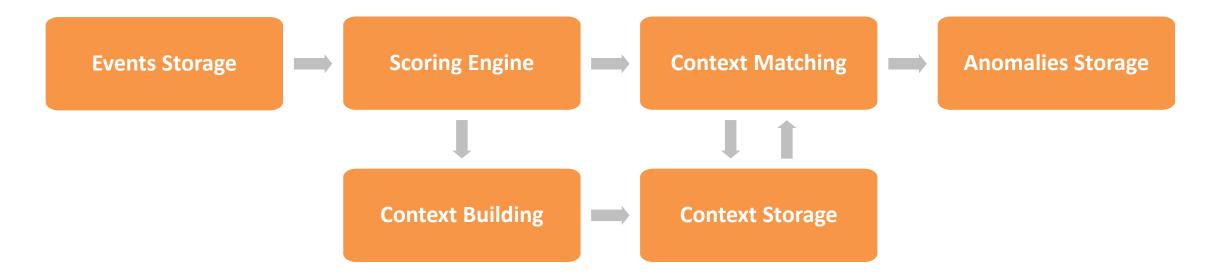
Threat Model		Те	emporal Anomali	es	Static Anomalies			
Category	Class	Unusual action	Unusual time	Unusual volume	New action	New server	New device	
	Unauthorized Access	high	medium	low	high	medium	low	
Regular Access Abuse	Account Sharing	low	medium	high	low	medium	edium high	
	Password Attack	medium	low	high	low	high	high	
Account Compromise	Privilege Escalation	high	medium	low	high	medium	low	
	Access Enumeration	high	low	medium	high	medium	low	
Data Exfiltration	Data Transfer	low	medium	high	low	high	medium	

Static Anomalies

STATIC ANOMALY DETECTION

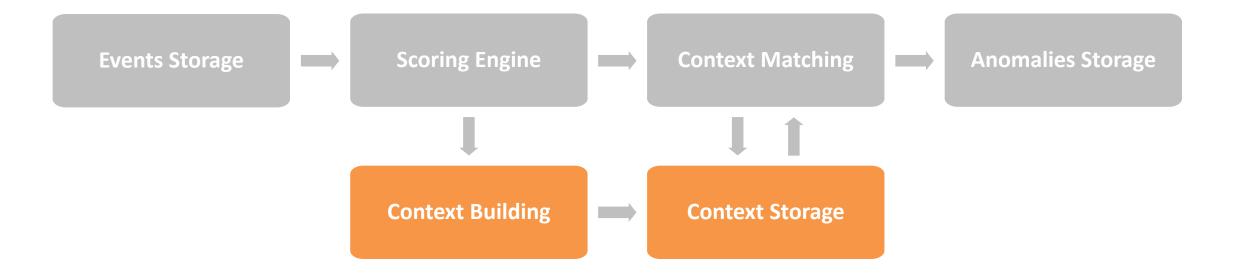
Plan

- Context building
- Context matching
- Anomaly analysis



CONTEXT BUILDING

- Whitelist known values for all users
- Define anomaly scores for all fields



CONTEXT THRESHOLD

• Problem

- Log poisoning attacks
- \circ Anomalies in user context

Solution

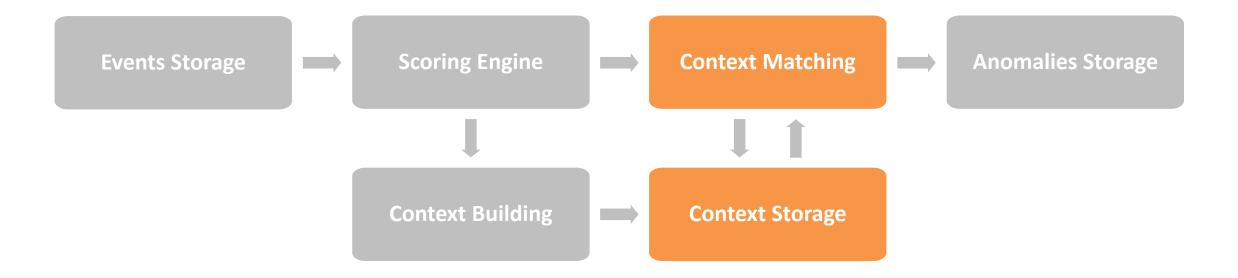
- Importance amplification
- \circ Mean of squared values

IP	Mean
172.16.100.11	320
 172.16.100.118	308
172.16.100.137	30
Threshold	219

IP		Mean	S	quared	
172.16.100.1	1	320	1	.02400	
172.16.100.11	8	308		94864	
172.16.100.13	37	30		900	
172.16.100.20	00	1		1	
172.16.100.20)1	1		1	
172.16.100.20)2	1			
172.16.100.20)3	5			
172.16.100.20)4				
172.16.100.21		<	T	1	
172.16.100		1		1	
172.100.21	9	1		1	
172.16.100.22	20	1		1	
Threshold		28		8,258	

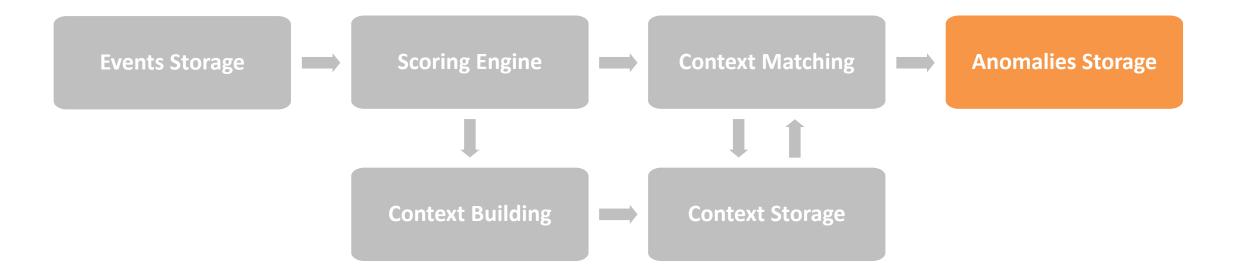
CONTEXT MATCHING

- Compare new events with the user context field by field
- Assign individual anomaly scores for unknown fields



ANOMALY ANALYSIS

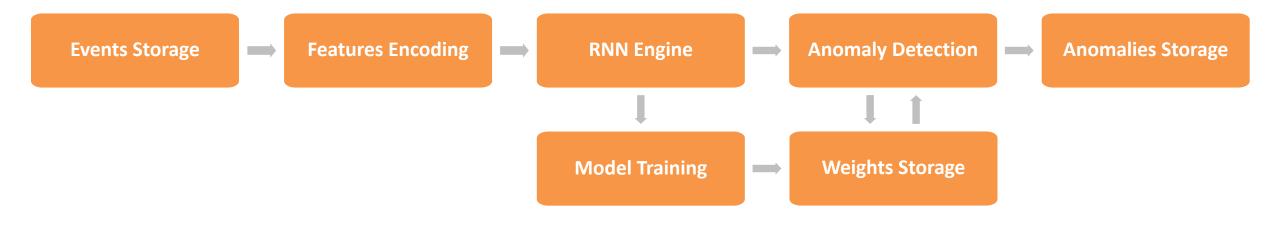
- Get a total event anomaly score from all its fields
- Get a total user anomaly score from all its events



Temporal Anomalies

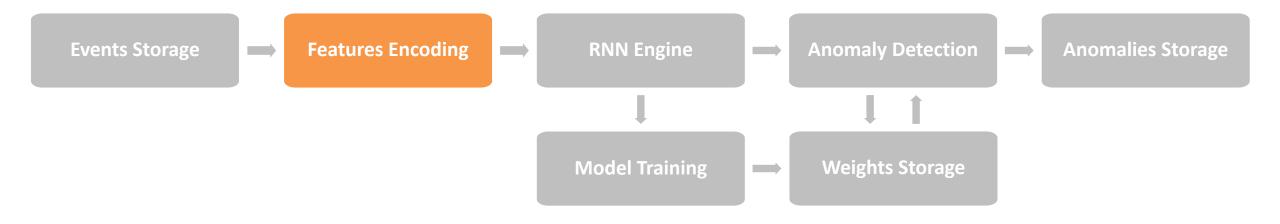
TEMPORAL ANOMALY DETECTION

- Establish a normal behavior baseline
- Train to predict normal user actions
- Analyze incorrectly predicted actions



FEATURE ENGINEERING

- Feature selection
- Feature encoding



FEATURE SELECTION

Data

Time	Title	User	Device	Action	Context 1	Context 2	Context 3
3/13/18 11:32	RFC/CPIC Logon Successful	SAP*	nsalab	AU5	F	0	
3/13/18 11:32	Successful RFC Call	SAP*	nsalab	AUK	SLO6	SAPLSLO6	RSAU_READ_FILE
3/13/18 11:46	Logon Failed	SAP*	MacBook-Pro-Nursulta	AU2	А	1	
3/13/18 11:47	Logon Successful	SAP*	MacBook-Pro-Nursulta	AU1	А	0	Р
3/13/18 11:51	Transaction Started	SAP*	MacBook-Pro-Nursulta	AU3	SE16		
3/13/18 11:51	Read Table	SAP*	MacBook-Pro-Nursulta	DU9	USR02	2	passed

FEATURE ENCODING

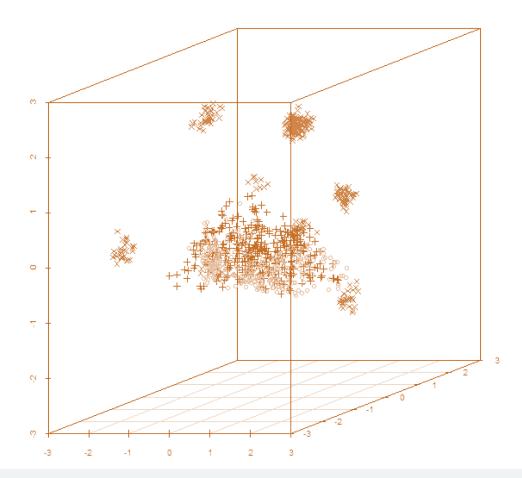
Vector

Time	Title	User	Device	Action	Context 1	Context 2	Context 3			
3/13/18 11:32	RFC/CPIC Logon Successful	SAP*	nsalab	AU5	F	0				
3/13/18 11:32	Successful RFC Call	SAP*	nsalab	AUK	SLO6	SAPLSLO6	RSAU_READ_FILE			
[0.19248842592592594 0.7110773240660063 0.8366013071895425							95425]			

FEATURE ENCODING

Knowledge Base

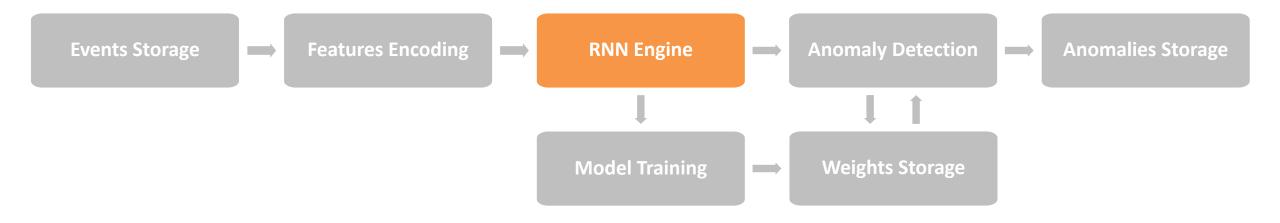
- On-the-fly KB
- Security-focused KB
- Application-focused KB
 - Static (1/100000 scale)
 - Mapping (1/100 scale)



Machine Learning

MODEL IMPLEMENTATION

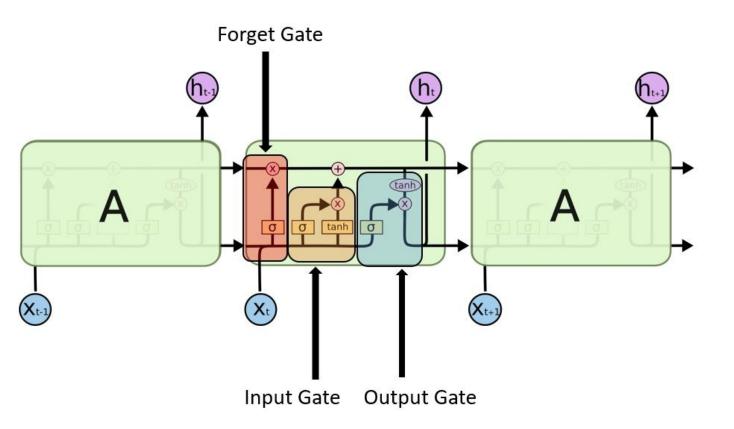
- Find the right algorithm for a task
- Implement a model and its environment
- Optimize the model for the best accuracy



MODEL MEMORY

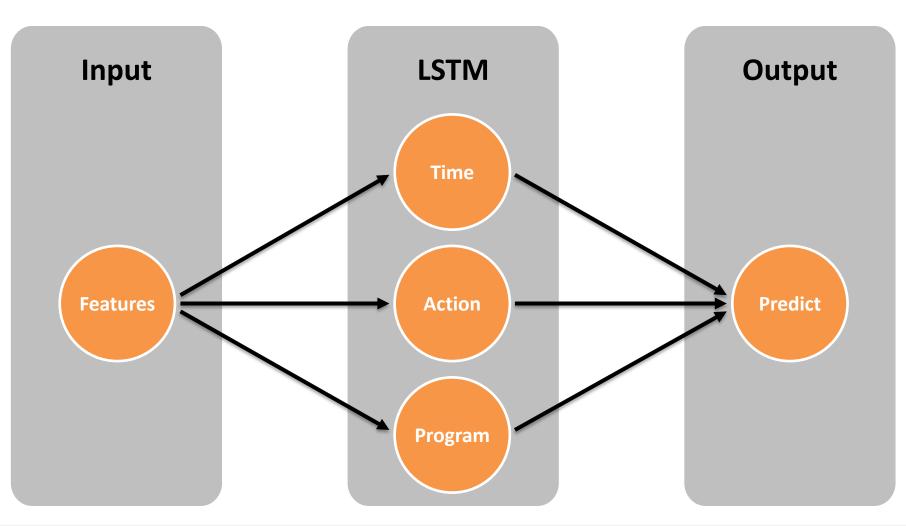
Recurrent neural networks

- \circ Simple RNN
 - Forgets longer dependencies
- Long Short-Term Memory
 - Proven track record
- o Gated Recurrent Unit
 - LSTM simplified
- Neural Turing Machine
 - RNN on steroids
- 0 ...



MODEL DESIGN

Architecture



MODEL PARAMETERS

• Architecture

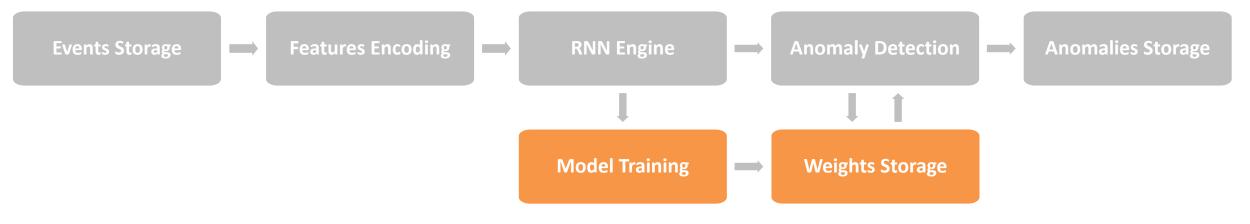
• Layers number, Neurons number, Activation function, Loss function, Optimizer, ...

• Data

• Features, Knowledge base, Sequence length, Normalization, ...

• Training

• Epochs, Bach size, Threshold, Distance, Smoothing, ...

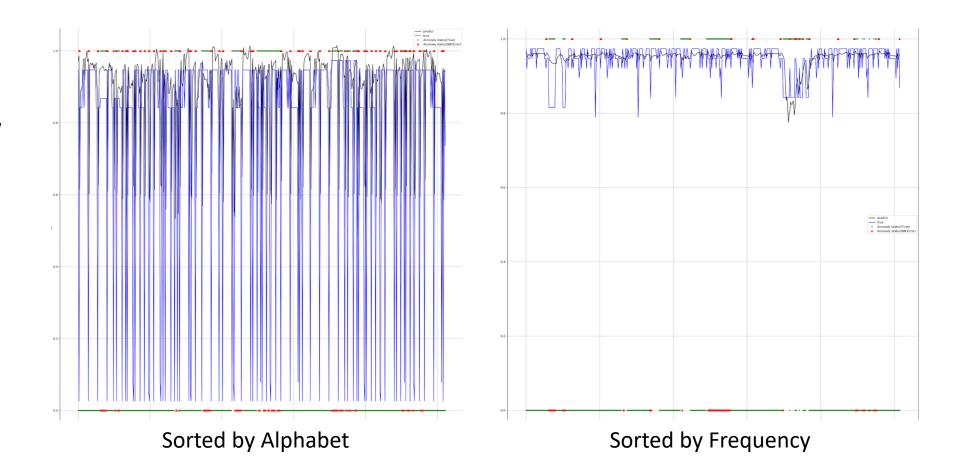


SEQUENCE LENGTH

- A B C D E F G H A C K E D
- A B C D E F G H A C K E D
- A B C D E F G H A C K E D
- A B C D E F G H A C K E D

KNOWLEDGE BASE SORTING

- Alphabet
- Criticality
- Frequency



ADAPTIVE THRESHOLD

• Error score

Distance-based

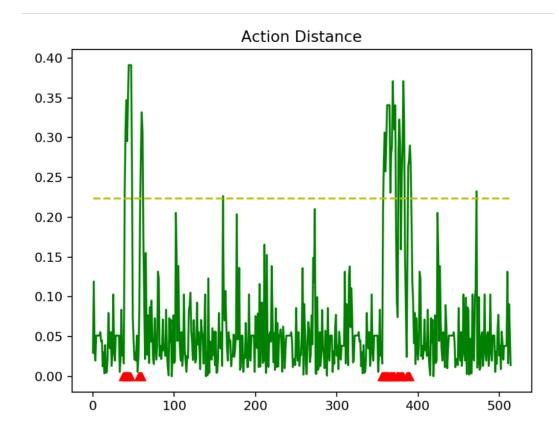
- Predicted value (blue)
- Actual value (green)

Threshold

• Max training error score

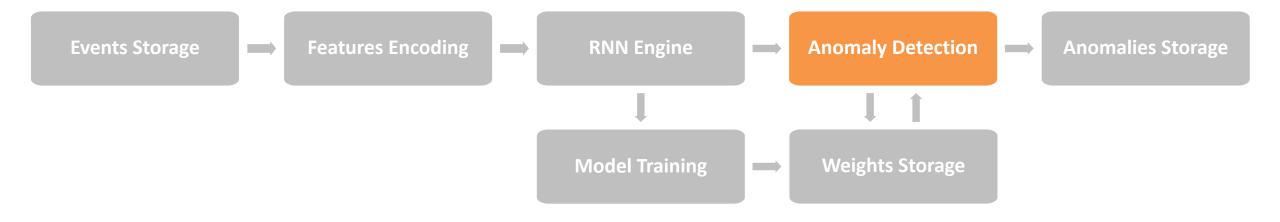
Sensitivity

- $\circ~$ As is
- \circ Coefficient



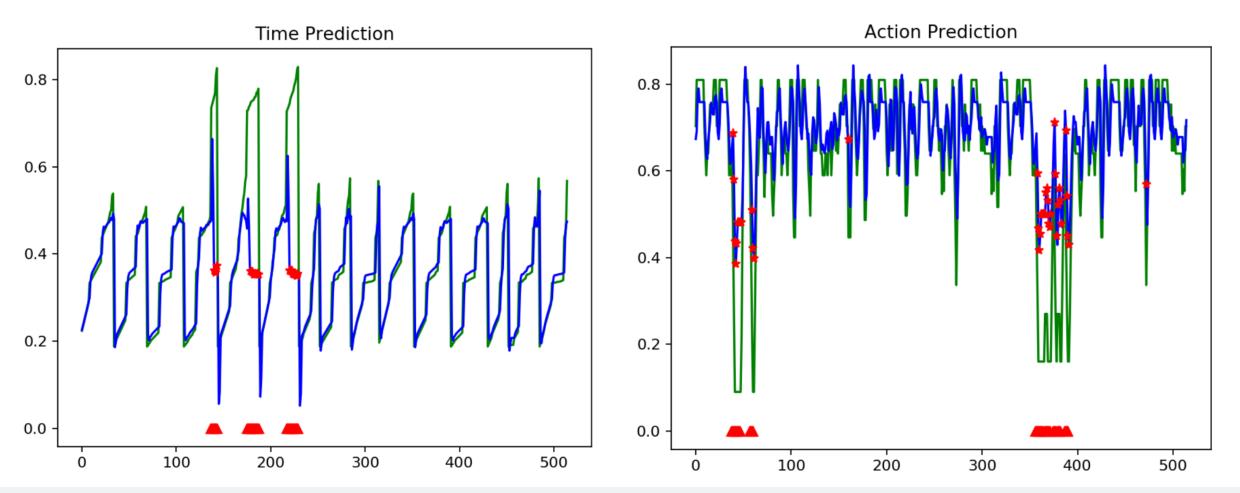
ANOMALY DETECTION

- Predict a potential user activity
- Report incorrectly predicted events above threshold



ANOMALY DETECTION

Prediction



ANOMALY DETECTION

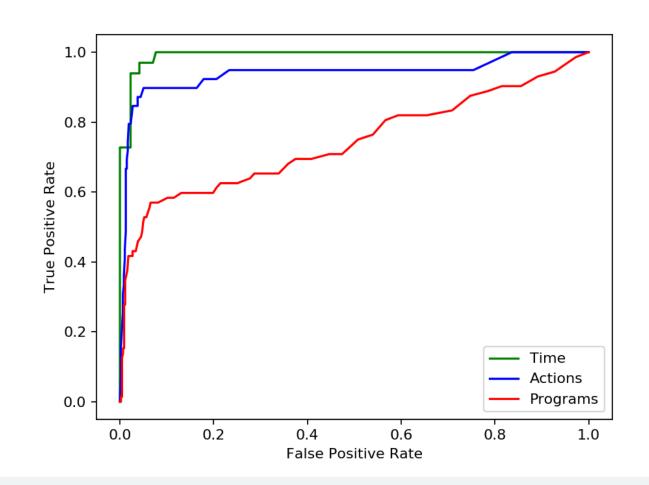
Metrics

• Accuracy 95%

- $\circ~$ True Positives 71%
- True Negatives 97%

• Errors 5%

- False Positives 3%
- False Negatives 29%



CONCLUSIONS

- Security analytics is more important than machine learning
- ML-driven solutions must help analysts and not replace them
- Adjust accuracy and tolerance to false positives for your situation
- Build an ecosystem of ML models and advanced analytics on top of it

AI BLESS YOU

Eugene Neyolov Head of R&D neyolov@erpscan.com

Read our blog erpscan.com/category/press-center/blog/

Join our webinars erpscan.com/category/press-center/events/

Subscribe to our newsletters eepurl.com/bef7h1 USA:

228 Hamilton Avenue, Fl. 3, Palo Alto, CA. 94301 Phone 650.798.5255

1111 111 111 111 11

EU: Luna ArenA 238 Herikerbergweg, 1101 CM Amsterdam Phone +31 20 8932892

erpscan.com inbox@erpscan.com

EU: Štětkova 1638/18, Prague 4 - Nusle, 140 00, Czech Republic