
Making Dynamic Instrumentation
Great Again

@xabiugarte

Malware Research Team
@

Deep Packer Inspector
https://packerinspector.github.io

https://packerinspector.com

[advertising space…]

Many instrumentation frameworks…

PIN

DynamoRIO

WinAppDbg

PyKD

PANDA

TEMU/DECAF

S2E

Avatar

PyDbg
Unicorn

DynInst
Frida

Motivation
Principles
Design / architecture
Features
Malware monitor
Future work

Technical aspects
Single process/binary, or whole system?
What events does it hook / instrument?
Transparency?

Practical aspects
How ‘easy’ is it to use?
Programming languages?

Other aspects
How often is it ‘updated’?
Community?
Is the project even alive?

Frameworks based on emulat ion

Full system emulator (vs. user-mode)
QEMU!
Emulate CPU, BIOS, memory, devices

Boot and fully emulate unmodified O.S.
(Linux, Solaris, Windows, DOS, BSD…)

Different guest architectures on different
host architectures (TCG)

QEMU

“Transparent” instrumentation
Emulated memory is not modified

No agent needed
Full system == …

Allows to monitor inter-process
interaction
Allows to instrument / inspect kernel

Some shor tcomings…

PANDA, DECAF, etc…
Plugins are coded in C/C++
I prefer python!

Faster development
Great libraries

Complex QEMU modifications
Risk of not updating frequently as
QEMU evolves

So, what is PyREBox?

Yet another dynamic instrumentation engine
Interactive analysis

Allows inspecting memory/registers
Useful built-in commands
IPython

So, what is PyREBox?

Scripting (python)
Callback types…

Instruction/block begin/end
Memory read/write
Specific opcode execution
Process create/remove
Module load/unload
TLB flush / context change

Extend shell with new commands

QEMU

Full system emulator (QEMU)
What about hardware assisted

virtualization?

E.g.: KVM

Target & host arch. must be the same
Host O.S. dependent

(e.g.: KVM won’t run on Windows)

So, what is PyREBox?

Leverages Volatility for memory
introspection
It is free!! (as in freedom)

General Public License

Design

Some pr inc ip les…

Interaction and scripts based in python
Tradeoff: high overhead

KISS: Keep Instrumentation Simple Stupid
Minimal modifications to QEMU
Core of the framework de-coupled from QEMU
Easier to upgrade to new QEMU versions
Tradeoff: advanced features

Taint analysis, record replay…

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Interactive shell
Python-based API

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

Initialization

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API Register
callbacks

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

E.g.: Inspect or manipulate
 memory

VMI

We see the system as a raw CPU!!

Only memory, registers, devices
Sequence of instructions
Processes, threads, handles, libraries…

Abstractions of the O.S.

Virtual Machine Introspection
Understand these abstractions

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

+ Basic VMI

VMI

Support for Windows and Linux, 32 and 64 bit
Process enumeration
Module (DLL / shared library) enumeration
Symbol resolution (exported symbols)

Deliver certain callbacks

Tr iggers

Python can be prohibitively expensive
Instruction begin, memory read…

Triggers
C/C++ snippets
Compiled as shared libraries (.so)
Loaded at runtime
Returns 0 if callback should not be delivered, 1
otherwise.

int trigger(callback_handle_t handle, callback_params_t params){
return should_deliver;
}

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

Callback

Callback

Glue

QEMU
(600 LoC of modifications)

Python run-time

Python
Core

(PyREBox)

Volatility
(VMI)

PyREBox (C/C++)

Script1.py

API

?

Callback

.so

Trigger (plugin) gets callback
notification.
Decides whether it must be
delivered or not

PyREBox usage

Easy to compi le, insta l l

Compiles and runs (tested):
Linux
Windows (thanks to linux subsystem)
Docker is supported

Easy to compi le, insta l l

Starting PyREBox is like starting any QEMU
session.
QEMU options via command line arguments
(Check QEMU docs)
Example scripts provided
PyREBox configuration file
Complete PyREBox documentation

https://pyrebox.readthedocs.io/en/latest/

https://pyrebox.readthedocs.io/en/latest/

PyREBox shell

PyREBox shel l

QEMU monitor
Regular QEMU
commands
Snapshot management
PyREBox script
management

PyREBox shell
 Pauses the guest
Inspect regs/mem
Modify regs/mem
Run built-in commands
Run volatility commands
Run custom commands
Run python code (ipython)
Autocompletion, syntax

$sh

Scripting

Scr ipt ing

Loaded/unloaded/reloaded
Startup script
QEMU command

Can start a shell at any time
start_shell()

Can import and use any python library

Scr ipt l i fe-cyc le

Script requirements:
requirements = [“plugins.guest_agent”]

Once it is initialized, it will be executed when:
An installed callback is triggered
A defined command is executed
def do_command(line):

Scr ipt ing

Key concepts
Processes are identified by their address
space (PGD / CR3)
Callbacks have different behavior

Check docs!
Monitored process

Certain callbacks are only triggered for
monitored processes
From shell: mon/unmon
From script:
api.start_monitoring_process

Scr ipt ing

Several scripts provided as examples
Automatically running a binary and starting a
shell on entry point
Monitoring memory write + memory
execution (unpacked code detection)
Tests for every callback type
Usage of triggers

Complete API documentation provided

Agent

Agent

File transfer and execution

Process running on the guest that communicates with
host via invalid opcodes

Windows and Linux guests supported, 32 & 64 bits

From shell or scripts:
agent.copy_file(src_path, dest_path)
agent.execute_file(path, args=[], env={},
exit_afterwards=False)

Malware Monitor

Malware Moni tor

4 different modules, configurable (json)
API tracer

Text log
Binary log (import in IDA)
Optionally, can extract parameters

Memory dumper
Automatically dump under certain conditions

Code coverage
Binary log (colorize B.B.s in IDA)
Text log (identify jumps between VAD regions)

Malware Moni tor

Memory event logger (interproc)
Events monitored:

Memory allocation / deallocation
Process creation, process handle opening
Remote memory writes / memory sharing
File reading/writing. File mapping
Memory permission changes

Useful to track injections, droppers, downloaders
Outputs a condensed text-based report

+ A log of events

Future work

What ’s next?

Support for additional architectures (ARM / MIPS)
Support for other Operating Systems

Debugging backend for IDA or r2
Integration into PyREBox of other tools

Support for other backends (PANDA?)

Questions?

talosintelligence.com
blog.talosintel.com

@talossecurity

