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Allow us to take you on two intertwined journeys

2

This talk in a nutshell

Research 
journey

§ Wanted to understand how fully-maintained Android phones 
can be exploited

§ Found surprisingly large patch gaps for many Android vendors

§ Also found Android exploitation to be unexpectedly difficult

Engineering 
journey

§ Wanted to check thousands of firmwares for the presence of 
hundreds of patches

§ Developed and scaled a rather unique analysis method

§ Created an app for your own analysis
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Android patching is a known-hard problem

3

Patching is hard 
to start with

§ Computer OS vendors regularly issue patches

§ Users “only” have to confirm the installation of 

these patches

§ Still, enterprises consider regular patching 

among the most effortful security tasks

Patch ecosystems

OS vendor 
§ Microsoft

§ Apple

§ Linux distro

Endpoints & severs

The nature of
Android makes 
patching so 
much more 
difficult 

§ “The mobile ecosystem’s diversity […] 

contributes to security update complexity and 

inconsistency.” – FTC report, March 2018 [1]

§ Patches  are handed down a long chain of 

typically four parties before reaching the user

§ Only some devices get patched (2016: 17% [2]). 

We focus our research on these “fully patched” 

phones

Android 
phones

Telco

Phone
vendor

Chipset 
vendor 

OS 
vendor

Our research question – How many patching mistakes are made in this complex 

Android ecosystem? That is: how many patches go missing?

OS patches

Patching  challenges
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Vendor patch claims can be unreliable; independent verification is needed

4

How do we determine whether an Android binary has a patch installed, without access to the 
corresponding source code?

Try exploiting the 
corresponding vulnerability?

Apply binary-only patch 
heuristicsTrust vendor claims?

§ No exploits publicly 
available for most Android 
bugs

§ A missing patch also does 
not automatically imply an 
open vulnerability
(It’s complicated. 
Let’s talk about it later)

§ Find evidence in the binary 
itself on whether a patch is 
installed 

§ Scale to cover hundreds of 
patches and thousands of 
phones

§ The topic of this 
presentation

Important distinction: A missing patch is not automatically an open security vulnerability. 
We’ll discuss this a bit later.
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Patching is necessary in the Android OS and the underlying Linux kernel

5

§ Android Open Source Project (AOSP) is maintained by 
Google

§ In addition, chipset and phone vendors extend the OS 
to their needs

§ Most exposed attack surface: The OS is the primary 
layer of defense for remote exploitation

§ Monthly security bulletins published by Google

§ Clear versioning around Android, including a patch 
level date, which Google certifies 
for some phones

Android OS patching (“userland”)
§ Same kernel that is used for much of the Internet 

§ Maintained by a large ecosystem
§ Chipset and phone vendors contribute hardware 

drivers, which are sometimes kept closed-source

§ Attackable mostly from within device
§ Relevant primarily for privilege escalation (“rooting”)

§ Large number of vulnerability reports, only some of 
which are relevant for Android

§ Tendency to use old kernels even with latest Android 
version; e.g., Kernel 3.18 from 2014, end-of-life: 2017

Linux kernel patching 

Responsibility 

Security 
relevance

Patch 
situation 

We focus our attention on userland patches 
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Agenda

6

§ Research motivation

§ Spot the Android patch gap

§ Try to exploit Android phones
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We want to check hundreds of patches on thousands of Android devices 

7

Android’s 2017 
security 
bulletins list 

~280

bugs (~CVEs) 
with Critical or 
High severity 

Android 
userland 
patch 
analysis 

Out-of-
scope 
(for now)

Of these 
userland bugs,

~180 

originate from 
C/C++ code 
(plus a few Java)

Source code is 
available for

~240 

of these bugs

We do not yet 
support most 
Java patches 

The remaining 
bugs are in 
closed-source 
vendor-specific 
components 

~700 kernel and 
medium/low 
severity 
userland 
patches

The heuristics would 
optimally work on 
hundreds of thousands 
of Android firmwares:
– 60,000 Android 

variants [3]

– Regular updates for 
many of these variants 

So far, we 
implemented 
heuristics for

164

of the 
corresponding 
patches
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The patch gap: Android patching completeness varies widely for different phones

8

Samsung J3 (2016)
Android version 5.1.1
Patch level: Jan 2018

Google Pixel 2
Android version 8.1
Patch level: Feb 2018

Samsung J5 (2016)
Android version 7.1.1
Patch level: Aug 2017

Wiko Freddy
Android version 6.0.1
Patch level: Sep 2017

9 10 12 1 2 3 4 5 6 7 8 9 10 11 12

2016 2017 Patches ”missing”
Critical High

0 0

0 0

2 10

18 62

Not affected
Patch found applied as claimed
Patched found above claimed level
Patch not found within claimed level
Patch not found outside claimed level Android version release date

Claimed patch level
Not tested
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Binary-only analysis: Conceptually simple 

9

Prepare patch test set

Vulnerable source code Patched source code

Compile with different compliers, compiler configurations, 
CPU options

Mask volatile information (e.g. call destinations)

Collection of unpatched 
binaries

Collection of patched 
binaries

Apply 
patch

Test for patch presence

Binary file

Compare to collections:
Find match with patched 

or unpatched sample

Mask volatile 
information

?

1 2
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Compiler
contains placeholders that are filled 
in during preprocessing

A bit more background: Android firmwares go from source code to binaries in two steps

10

#include <limits.h>
#include <string.h>
void foo(char* fn){
char buf[PATH_MAX];
strncpy(buf, fn, PATH_MAX);

}

stp x28, x27, [sp,#-32]!
[…]
orr w2, wzr, #0x1000
mov x1, x8
bl 0 <strncpy>
[…]
ret

stp x28, x27, [sp,#-32]!
[…]
orr w2, wzr, #0x1000
mov x1, x8
bl 11b3e8 <strncpy@plt> 
[…]
ret

Compiler
preprocesses and compiles source 
code into object files that are then 
fed into the linker

Compiler Linker 
combines the object files into an 
executable firmware binary.

LinkerSource code
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The basic idea: Signatures can be generated from reference source code

11

Disassembly of object file, after compiler but before linker
0000000000000000 <impeg2d_api_reset>:

0:  a9bd7bfd   stp    x29, x30, [sp, #-48]!
4:  910003fd   mov    x29, sp

[…]
20:  f9413e60   ldr    x0, [x19, #632]
24:  52800042   mov    w2, #0x2                        // #2
28:  b9402021   ldr    w1, [x1, #32]
2c:  94000000   bl     0 <impeg2_buf_mgr_release>  2c: R_AARCH64_CALL26  impeg2_buf_mgr_release

[…]

Instruction format of the bl instruction
100x 01 ii iiii iiii iiii iiii iiii iiii 

Compile reference source code (before and after patch)

Sanitize instructions
Toss out irrelevant destination 
addresses of the instruction

Parse 
disassembly 
listing for 
relocation 
entries

Create hash of remaining binary code

Generate signature containing function length, position/type of relocation entries, and hash of the code

Prepare 
patch 
test set

1
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At scale, three compounding challenges need to be solved

12

Too much source code
§ There is too much source code to collect
§ Once collected, there is too much source code to compile

Too many compilation possibilities 
§ Hard to guess which compiler options to use
§ Need to compile same source many times

Hard to find code “needles” in binary “haystacks”
§ Without symbol table, whole binary needs to be scanned
§ Thousands of signatures of arbitrary length



Das Logo Horizontal

— Pos / Neg

3

Signature generation would require huge amounts of source code

13

Signature generation requires many source code trees

Source code trees are managed in a manifest, which lists git repositories with revision and path in a 
source code tree

One Android source code tree is roughly 50 GiB in size

…
<project name="platform/external/zxing"  revision="d2256df36df8778a3743e0a71eab0cc5106b98c9"/>
<project name="platform/frameworks/av"   revision="330d132dfab2427e940cfaf2184a2e549579445d"/>
<project name="platform/frameworks/base" revision="85838feaea8c8c8d38c4262e74d911e59a275d02"/>
…
+~500 MORE REPOSITORIES

Currently ~1100 source code trees are used in total 
(many more exist!)
1100 x 50 GiB = 55 TiB
Would require huge amount of storage, CPU time, and 
network traffic to check out everything

Amount of source code

Compilation possibilities

Needles in haystacks

§ Hundreds of different Android revisions 
(e.g. android-7.1.2_r33)

§ Device-specific source code trees 
(From Qualcomm Codeaurora CAF)
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We leverage a FUSE (filesystem in userspace) to retrieve files only on demand

14

platform/frameworks/av rev 330d132d
platform/frameworks/base rev 85838fea

Manifest 1

platform/frameworks/av rev d43a8fe2
platform/frameworks/base rev 18fac24b

Manifest 2

rev 330d132d
rev d43a8fe2
rev deadbeef

platform/frameworks/av 

rev 85838fea
rev 18fac24b
rev cafebabe

platform/frameworks/base 

platform/frameworks/av rev deadbeef
platform/frameworks/base rev cafebabe

Manifest 3

Reduces storage requirement by >99%: 
55 TiB => 300 GiB
Saves network bandwidth and time required for 
checkout
Prevents IP blocking by repository servers

Filesystem in userspace (FUSE)
§ Store each git repository only once 

(with git clone --no-checkout)
§ Extract files from git repository on demand 

when the file is read
§ Use database for caching directory contents

Insight: The same git repositories are used for many manifests.

How this can be leveraged

Amount of source code

Compilation possibilities

Needles in haystacks
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Using our custom FUSE, we can finally generate a large collection of signatures

15

Amount of source code

Compilation possibilities

Needles in haystacks

§ Read manifest

§ Use FUSE filesystem to read 

files on demand

Mount source code tree
§ Run build system in dry-run 

mode, don’t compile 

everything

§ Save log of all commands to 

be executed

§ Various hacks/fixes to build 

system required

Generate build log
§ Source-code patch analysis 

is much easier than binary 

analysis

§ Determines whether a 

signature match means that 

the patch is applied or not

Run source-code analysis

§ Use command line from 

saved build log

§ Save preprocessor output 

in database

Preprocess source files
§ >50 different compiler 

binaries

§ All supported CPU types

§ Optimization levels 

(e.g. -O2, -O3)

§ 3897 combinations in total, 

74 in our current optimized 

set

Recompile with variants
§ Evaluate relocation entries 

and create signatures for
each compiler variant

Generate signatures

Prepare 
patch 
test set

Next 

question: 

How many 
different 
compiler 
variants do 
we need? 

1
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Brute-forcing 1000s of compiler variants finds 74 that produce valid signatures 
for all firmwares tested to date

16
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# compiler config variants = compilers x [compiler options]

Successful sub-tests

Just two variants account for 60% of successful sub-tests:
- gcc version 4.9.x-google 20140827 (prerelease)
- Android clang version 3.8.256229
Both were run with each git’s default configuration

Amount of source code

Compilation possibilities

Needles in haystacks

§ Our collection includes 
3897 compiler 
configuration variants, 
only 74 of which are 
required for firmwares 
tested to date. 

§ To ensure a high rate of 
conclusive tests, test 
results are regularly 
checked for success.

§ The test suite is amended 
with additional variants 
from the collection as 
needed.

§ The collection itself is 
amended with additional 
compiler configuration 
variants as they become 
relevant.

Tests are regularly optimized

§ For 224 tested 64-bit firmwares, 
signatures from the first 74 
compiler config variants provide 
full test coverage

§ 74 variants à
6,944 signatures à 3MB

§ We tried 3,897 variants à
775,795 signatures à 34MB
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Finding needles in a haystack: What do we do if there is no symbol table?

17

Amount of source code

Compilation possibilities

Needles in haystacks

Challenge

Checking signature at each position 
is computationally expensive

Relocation entries are not known 
while calculating checksum

32bit code uses Thumb encoding, 
for which instruction start is not 
always clear

Insight

Similar problem already 
solved by rsync

Relocation entries are only 
used for certain instructions

Same binary code is often 
also available in 64bit version 
based on same source code

Solution

Take advantage of rsync rolling 
checksum algorithm

Guess potential relocation entries 
based on instruction type and 
sanitize args before checksumming

Only test 64bit code

Simply compare function with pre-computed samples

Test for 
patch 
presence

2
Function 
found in 
symbol 
table

Function 
not in 
symbol 
table
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Using improved rolling signatures, we can efficiently search the binary ‘haystack’ 
for our code ‘needles’

18

...
97fee7a2 bl c7c40 <strnpy@plt>
94000000 bl 0
f10002ff cmp x23, #0x0
1a9f17e8 cset w8, eq
b40000b6 cbz x22, 10ddbc
3707fdc8 tbnz w8, #0, 10dd6
f10006d6 subs x22, x22, #0x1
54ffff42 b.cs 10dd9c
35fffd48 cbnz w8, 10dd64
36000255 tbz w21, #0, 10de08
394082e8 ldrb w8, [x23,#32]
35000208 cbnz w8, 10de08
52adad21 mov w1, #0x6d690000
320003e8 orr w8, wzr, #0x1
728daca1 movk w1, #0x6d65

Potential relocation entries are 
detected based on instruction.

Size-8 window matches on 
start of signature

Overlapping window matches 
on end of signature

Zero-out volatile bits

Hex dump of instruction Assembly code / instructions

Sanitize arguments before 
checksumming

Match signatures of 
arbitrary lengths using 
sliding windows
§ Two overlapping 

sliding windows
§ Only needs powers of 

2 as window sizes to 
match arbitrary 
function lengths

§ Allows efficient 
scanning of a binary 
for a large number of 
signatures 

Process step

Amount of source code

Compilation possibilities

Needles in haystacks

To avoid false positives (due to guessed relocation entries), signature is matched from the first window to the end of the overlapping window
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Putting it all together: With all three scaling challenges overcome, we can start testing

19

§ Read manifest
§ Fuse filesystem to read files 

on demand

Mount source code tree
§ Run build system in dry-run 

mode, don’t compile 
everything

§ Save log of all commands to 
be executed

§ Various hacks/fixes to build 
system required

Generate build log
§ Source-code patch analysis 

is much easier than binary 
analysis

§ Determines whether a 
signature match means that 
the patch is applied or not

Run source-code analysis

§ Use command line from 
saved build log

§ Save preprocessor output 
in database

Preprocess source files
§ >50 different compiler 

binaries
§ All supported CPU types
§ Optimization levels 

(e.g. -O2, -O3)
§ 3897 combinations in total, 

74 in our current optimized 
set

Recompile with variants
§ Evaluate relocation entries 

and create signatures for
each compiler variant

Generate signatures

Prepare patch test set
1

Test for patch presence
2

§ Find and extract 
function (using 
symbol table or 
rolling signature)

§ Mask relocation 
entries from 
signature

§ Calculate and 
compare hash of 
remaining code
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Patch gap: Android vendors differ widely in their patch completeness

20

Notes
– The tables shows the average number of missing 

Critical and High severity patches before the 
claimed patch date

* Samples – Few: 5-9; Many: 10-49; Lots: 50+
– Some phones are included multiple times with 

different firmwares releases
– Not all patch tests are always conclusive, so the 

real number of missing patches could be higher
– Not all patches are included in our tests, so the 

real number could be higher still
– Only phones are considered that were patched 

October-2017 or later
– A missing patch does not automatically indicate 

that a related vulnerability can be exploited

Notes
– Again, we show the average of missing High and 

Critical patches for phones that use these 
chipsets

– Samsung phones can run on a Samsung or 
Qualcomm chipset

Vendors differ 
in how many 
patches are 
missing from 
their phones 

Some of the 
patch gap is 
likely due to 
chipset vendors 
forgetting to 
include them

Missed patches Chipset Samples*
< 0.5 Samsung Lots

1.1 Qualcomm Lots

1.9 HiSilicon Many

9.7 Mediatek Many

Missed patches Vendor Samples*

0 to 1

Google Lots
Sony Few
Samsung Lots
Wiko Few

1 to 3
Xiaomi Many
OnePlus Many
Nokia Few

3 to 4

HTC Few
Huawei Many
LG Many
Motorola Many

More than 4
TCL Many
ZTE Few
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Agenda

21

§ Research motivation

§ Spot the Android patch gap

§ Try to exploit Android phones
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Can we now hack Android phones due to missing patches?

22

§ We find that most phones miss patches 
within their patch level

§ While the number of open CVEs can be 
smaller than the number of missing patches, 
we expect some vulnerabilities to be open

§ Many CVEs talk of “code execution”, 
suggesting a hacking risk based on what we 
experience on Windows computers

At first glance, Android phones look hackable

§ Modern exploit mitigation techniques 
increase hacking effort

§ Mobile OSs explicitly distrust applications 
through sandboxing, creating a second layer 
of defense

§ Bug bounties and Pwn2Own offer relatively 
high bounties for full Android exploitation

Mobile operating systems are inherently 
difficult to exploitVS.
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Do criminals hack Android?  Very rarely.

23

Criminals generally use three different methods to compromise Android devices

Trick user into insecure actions:
§ Install malicious app
§ Then grant permissions 
§ Possibly request ‘device administrator’ 

role to hinder uninstallation

§ Ransomware [File access permission]
§ 2FA hacks [SMS read]
§ Premium SMS fraud [SMS send]

Social engineering Local privilege escalation Remote compromise

Approach

§ Trick user into installing malicious app
§ Then exploit kernel-level vulnerability to 

gain control over device, often using 
standard “rooting” tools

§ Targeted device compromise, e.g. 
FinFisher and Crysaor (Same company 
as infamous Pegasus malware)

§ Advanced malware

§ Exploit vulnerability in an outside-
facing app (messenger, browser)

§ Then use local privilege escalation

§ (Google bug bounty, Pwn2Own)
Used for

Frequency in 
criminal 
activity

Made harder 
through 
patching û ü (userland or kernel) ü (userland and kernel)

§ Almost all Android “Infections” § Regular observed in advanced 
malware and spying

§ Very few examples of recent 
criminal use
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An exploitable vulnerability implies a missing patch, but not the other way around

24

Missing patches in source code

Code parts that are ignored during compilation 

Missed patches in binary

Vendor created alternative patch

Vulnerability requires a specific configuration

Bug is simply not exploitable

Errors in our heuristic (it happens!) 

Open vulnerabilities

Missing patches 
(source code analysis)

Missing patches
(binary analysis)

Open 
vulnerabilities

=

=
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A single Android bug is almost certainly not enough for exploitation

25

Android remote code execution is a multi-step process

Corrupt memory in an application. Examples: 
- Malicious video file corrupts memory using 

Stagefright bug
- Malicious web site leverages Webkit vulnerability

Information leakage is used to derive ASLR 
memory offset (alternatively for 32-bit binaries, 
this offset can possibly be brute-forces)

Ø This gives an attacker control of the application 
including the apps access permission

Do the same again with two more bugs to gain 
access to system context or kernel

Ø This gives an attacker all possible permissions 
(system context), or full control over the device 
(kernel)

Simplified exploit chain examples with 4 bugs

System context

Aside from exploiting MC and IL programming bugs, Android 
has experienced logic bugs that can enable alternative, often 
shorter, exploit chains

Application context

1 Info leakage (IL)

2 Memory 
corruption (MC)

ASLR

ASLR

3a 4a

MCIL

4b

3b

MC

IL

KASLR

Kernel 

2

1

43
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Remotely hacking a modern Android device usually requires chains of bugs

26

High privileged domain 
(e.g. system-server,
Bluetooth)

System context 
protection mechanisms 
(e.g. ASLR, sandbox)

DH

Remote 
attacker

Famed 
real-world
exploit 
examples

DH Data handling errors (CWE-19)
e.g. buffer errors, input 
validation mistakes

SF Security features gaps (CWE-254)
e.g. permission errors, privileges 
mishandling, access control errors

TS Time and state errors (CWE-361)
e.g. race conditions, incorrect 
type conversions or casting

Critical

High

Moderate

Weakness severities

Weakness classes

Step 2: Escalation of Privilege
At least one other weakness (or 
the users themselves) helps the 
attacker overcome protection 
mechanisms and gain access to 
higher privileges

Step 1: Remote Code Execution 
and Information disclosure
In many cases, one critical or high-
severity weakness is exploited to 
allow for Remote Code Execution 
(RCE). (In the special case of 
BlueBorne, no sandbox exists.)

Application context 
protection mechanism 
(e.g. ASLR, sandbox)

X

1 2 4

DHDH

Stagefright [2015]
Android < 5.1.1

BlueBorne [2017]
Android < 8.0

Pixel - Nexus 6P [2017]
Chrome Android prior  
54.0.2840.90
Pixel [2018]
Chrome Android prior 
61.0.3163.79

Return to libstagefright [2016]
Android < 7.0

X

DH

SF

3

Not needed: BNEP stack 
is addressed directly

DH SF

DH

TS DH

DH
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Exploit chain does not 

include break-out of 

untrusted app context

X

In case you want to dive deeper: More details on well-documented Android exploit chains

BlueBorne
2017

Pixel / Nexus 6P
2017

Pixel
2018

Famed 
real-world
exploit 
examples

Return to 
libstagefright
2016

Attacker perform arbitrary 

read/write operations 

leading to code execution 

based on incorrect 

optimization assumption 

in Chrome v8

Content view client in 

Chrome allowed 

arbitrary intent 

scheme opening, 

which allows escaping 

the Chrome sandbox

Open intent 

controlled URL 

in Google Drive 

to get shell in 

untrusted app 

context

Chrome V8 bug to get RCE 

in sandbox using a OOB 

bug in GetFirstArgument-

AsBytes function

Use map and unmap mismatch in libgralloc to escape Chrome sandbox and 

inject arbitrary code into system-server domain by accessing a malicious URL 

in Chrome

Call mprotect to get 

RCE into privileged 

system-server domain

ROP execution in 

mediaserver process

Module pointer leak to 

get address of executable 

code

Heap pointer leak to 

bypass ASLR protection

DH

Trigger memory 

corruption in BNEP 

service that enables an 

attacker to execute 

arbitrary code in the 

high privileged 

Bluetooth domain

Information leak 

vulnerability leaks 

arbitrary data from 

the stack, which 

allows an attacker to 

derive ASLR base 

address for a bypass

SF DH

DHDH SF

TS DH

1 2 43

27

BlueBorne is a vulnerability in the 

Android Bluedroid/Fluorid userland stack, 

which is already a high-privileged domain

Not 
needed
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SnoopSnitch version 2.0 introduces patch analysis for all Android users

28

Search: SnoopSnitch

Tool name

SnoopSnitch

Purpose

§ [new in 2.0] Detect potentially 
missing Android security patches

§ Collect network traces on Android 
phone and analyze for abuse

§ Optionally, upload network traces to 
GSMmap for further analysis

Requirements

§ Android version 5.0

§ Patch level analysis:
All phones incl. non-rooted

§ Network attack monitoring: 
Rooted Qualcomm-based phone

Source
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Take aways

29

§ Android patching is more complicated and less reliable than a single patch 
date may suggest

§ You can finally check your own patch level thanks to binary-only analysis, 
and the app SnoopSnitch

§ Remote Android exploitation is also more much complicated than 
commonly thought 

Questions?
Jakob Lell <jakob@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

Many thanks to Ben Schlabs, Stephan Zeisberg, Jonas Schmid, Mark Carney, 
Luas Euler, and Patrick Lucey!
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