
From Quantitative Change to Qualitative Change
-- A New Fuzzing Method on Android

Zhang Qing@xiaomi and Bai Guangdong@SIT

Self Introduction

• Zhang Qing
• Senior Android security researcher from Xiaomi Inc., China
• Research on Android security and payment security

• Bai Guangdong
• Lecturer from Singapore Institute of Technology (SIT), Singapore
• Research on mobile security and protocol analysis

Agenda

• Harder and harder to find new vulnerabilities?
• Traditional fuzzing methods
• Our new approaches
• Case study: several vulnerabilities
• Q&A

Harder and harder to find new vulnerabilities?

• APP
• Third-party libraries
• Binder
• Framework
• Kernel
• ... …

Harder and harder to find a Vulnerability?

• What do we do?
• Go after the low-hanging fruit

• Third-party libraries
• Small-scale apps
• ……

• AI?
• Are you kidding me!?!?
• There is still a long way to go

It is of low-efficiency to find vulnerability by reading the source code

Modern projects are becoming bigger and bigger

What’s more, source code is not always available à have to reverse engineering

Fuzzing

http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer
https://code.google.com/p/memory-sanitizer/wiki/MemorySanitizer
https://sites.google.com/a/chromium.org/dev/developers/testing/control-flow-integrity
https://sites.google.com/a/chromium.org/dev/developers/testing/libfuzzer

Fuzzing

Fuzzing has been well researched, and extensively used by android
security researchers to identify vulnerabilities.

Basically, current fuzzing methods take into account two coverages:
• Path coverage: static analysis, symbolic execution, etc…
• Input range coverage: test cases of AFL

Fuzzing tools
• Path coverage: cover as many paths as possible
• Symbolic Execution
• Soot
• Bunny
• Model checking

• Input range coverage: offer enough varieties of inputs
• Peach
• AFL

• Other
• Binder fuzzing
• Drozer-based fuzzing

A New Fuzzing Perspective

• Philosophy: quantitative change leads to qualitative
change (by G. W. F. Hegel)
• We know something happen because quantitative change

leads to qualitative change.
• Is it the same for vulnerability detecting?

• Use this philosophy to improve existing fuzzing tools

• The derived fuzzing are different from existing
approaches
• Can find much more security vulnerabilities that traditional

fuzzing approaches cannot find
• Why? How?

Core Ideas

• Single function point
• Quantitative change: multiple times

• Multiple function points
• Quantitative change: combination

Quantitative Change for Single Function Point

• We feed the same test case to test one exposed function point, and
get some unexpected results

• Why?
• A write operation may fail after we have written enough wrong or abnormal

data to the system
• A read operation may fail after we have read enough times from abnormal or

unavailable data source
• Others…

To further elaborate …

• Write

8 slots

size of slot = 10 bytes

To further elaborate …

• Write

8 slots

size of slot = 10 bytes A single write which exceeds the slot
AAAAA AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

To further elaborate …

• Write

8 slots

size of slot = 10 bytes A single write which exceeds the slot
AAAAA AAAAA √Safe for a slot due to bound check

To further elaborate …

• Write

8 slots

size of slot = 10 bytes More than 8 write operations
AAAAA AAAAA √Safe for a slot due to bound check
AAAAA AAAAA √AAAAA AAAAA √
AAAAA AAAAA √AAAAA AAAAA √AAAAA AAAAA √
AAAAA AAAAA √AAAAA AAAAA √
AAAAA AAAAA �

But how do we find this …

1. It happened when we try to locate one vulnerability which cannot be easily
identified from the log

2. We had to execute the fuzzing tools for multiple times to reduce the scope

3. During this, we found another vulnerability which is completely different from
the one we had been trying to locate

4. The newly found vulnerability is a permanent vulnerability, and initially we
didn’t understand the cause. So we had to factory reset the phone for
multiple times to analyze it

5. After two-days’ exploration, we found out the cause, which lead to our new
idea: quantitative change for vulnerability detection

An example:
fuzzing Clipboard

1. Let us test write of clipboard

An example:
fuzzing Clipboard

1. Let us test write of clipboard
2. Write a string

An example:
fuzzing Clipboard

1. Let us test write of clipboard
2. Write a string
No matter how complicated and long
the string is, no crash is caused

An example:
fuzzing Clipboard

1. Let us test write of clipboard
2. Write a string
No matter how complicated and long
the string is, no crash is caused
3. After we write into clipboard for

200+ times, the system crashed

An example:
fuzzing Clipboard

1. Let us test write of clipboard
2. Write a string
No matter how complicated and long
the string is, no crash is caused
3. After we write into clipboard for

200+ times, the system crashes
4. This is because the garbage data is

written into the system partition.
What is more, it makes the device a
brick: cannot boot any more

Another example

When fuzzing one driver, our fuzzer manages to
write garbage data to the nv partition, which
overwrites the IMEI.

Quantitative Change for Multiple Function Points

• We combine multiple function points in one round of testing, and get
some unexpected results

• Why?
• Some vulnerabilities only happen under a certain system state, which is

reached by a sequence of function calls
• Considering the function calls which may change the system state

• E.g., Set - Get, Write - Read

But how do we find this …

1. Similar to the previous case, it also happened when we try to locate one
vulnerability which cannot be easily identified from the log

2. Again, we had to execute the tools for multiple times to reduce the scope
3. During this, we found another vulnerability which is completely different

from the one we had been trying to locate
4. This time, the newly found vulnerability is in a binder service
5. The vulnerability does not appear when executing a function once, but

appears in the second time.
6. We found that in the function, the read method A is before the write

method B. So the vulnerability does not happen in the first time. When
fuzzing in the second time, the vulnerability happens after the read
method is executed.

Another Example:
Clipboard Again

1. Let us test write of clipboard

Normal fuzzing: sequentially

Method #1

Method #2

Method #3

Method #4

Method #5

Method #6

Method #7

Method #8 read

Method #9

Method #10

Method #11 write

…

Write after read: safe √

Another Example:
Clipboard Again

1. Let us test write of clipboard

Our new method

Read after write

Understand this method

• To some extent, this method is similar to the essence of model
checking: exhaustive enumeration
• However, it is not necessary to combine all the function points like

model checking does. We only need to combine those core functions
• E.g., as discussed before, Set - Get, Write - Read

Demonstration

Results

• Using this idea, we have identified about 50 vulnerabilities from
various mobile phones
• Code execution
• Elevation of privilege
• Information disclosure
• Permanent denial of service

• We were ranked #1 in some bounty programs twice in 2017 and 2018

It is not purely philosophic!!

• This new fuzzing approach is under the process of patenting.

Q&A

Zhang Qing && Bai Guangdong

������

