Friends! CountryMen!
Lend me your task port!

Jonathan Levin, @Morpheus
http://NewQSXBook.com/
http://Technologeeks.com/

Tools used in this presentation:

* Joker: http://NewOSXBook.com/tools/joker.html

e Jtool: http://NewOSXBook.com/tools/jtool.html
* Included in LiberiOS binaries, /jb/usr/local/bin

 QjLin writeup: http://NewOSXbook.com/QilLin/gilin.pdf

* As one download:

e http://NewQSXBook.com/tools/hitbpack.tgz

* To unpack (on a liberated i-Device):
* mkdir /jb/tmp; cd /jb/tmp; tar xvf SOLDPWD/hitbpack.tgz

A brief history of jailbreaking

* Jailbreaks have been around for as long as the iPhone has

* Initial jailbreaks were very simple, just getting root access
» Root access would suffice for all operations (e.g. disabling MACF)

* Apple incrementally stepped up defenses

0.3.5

40 50 6.0 7.0 8.0 9.0 102 11
321| 401 433 511 612 615 706 71 8.1.1 84 934 10.31
e 812 841 (90291 933 10.1.1 | ‘
| | | | | |] | . N
| | | | I | | | | | Pegasus I |
Star Star Saffron Absinthe evasiln evasiln? XpanYuan FuxiQin Yalu
i Sword FuxiQin: async_wake
! i : ! : mach_portal
i ; pOsixspwn i i Nu';waStnne i
i ' i i ; Phoenl:u:
| : PanguAxe TaiG1 TaiG2 | : ! X3 Fetch
! E : ! E i +zZVA
! Kaslr | food 5 ! :
i SMEP (32-bit) : : | i i Task access
' } Entitlements { CONST ofkemel data |
i Early Random Hardening i :
Sysctl hardening Kemel Patch Protection '

Zone hardening AMCC/KTRR (iPhone T & up)
__DATA__CONST for kemnel & SLC
Zone MetaData redesign

Note: timeline is approximation — some features added in minor versions or betas

The present day

» Kernel memory protections prevent “traditional” kernel patching

e A7-A9 devices:

* KPP (“watchtower”) runs at EL3, similar to Samsung KNOX’s PKM
» Race conditions abound (due to interrupt driven nature of checks)
* Todesco method proven to bypass KPP using fake page table entries

* A10 devices and later:
 AMCC (“KTRR”) provides hardware-based defense
* |nitial implementation (pre iOS 10.1.1) also bypassable, but nothing since

KPP

* Introduced with iOS 9

* Contains code loaded (via Mach-O) into EL3 (Secure Monitor)
 Joker automatically detects this in kernelcache

T e EI B~/ Documents /Work/JTool/joker -dec ~/Downloads/kernelcache.release.ipad5
mmapped: @x128dde@0d

Feeding me a compressed kernelcache, eh? That's fine, now. I can decompress!

Compressed Size: 13879505, Uncompressed: 27459584, Unknown (CRC?): ©xl17e4a3b, Unknown 1: Oxi1l
btw, KPP is at 13879948 (@xd3ca84)..And I saved it for you in /tmp/kpp

 Kernel loads into EL1 ot e ot

mmapped: ©x121b22e08

° U na ble to mOd ify/affect E L3 by design I:iiai:ra(::;:J:-;al_(:;r_‘:]:a;rom i0S 11.8 , or later This is a 64-bit kernel from i0S 11.x (bi+),

ARMé64 Exception Vector is at file offset @@0x93000 (Addr: exfffffffee7e970ee)

T el I tool -1 /tmp/kpp 3:56
LC @@: LC_SEGMENT_64 Mem: @x4120000000-0x4100006000 __TEXT

Mem: @x4100001000-8x4168885cak __TEXT.__text (Normal)

Mem: @x4180085ca4—-0x4100805d64 __TEXT.__const

Mem: Px4100005d64—8x4100885dca __TEXT.__cstring (C-String Literals)
LC @1: LC_SEGMENT_é&4 Mem: ©x4100006000-0x410008c000 __DATA

Mem: @x4100006000-0x410000b1f8 __DATA.__common (Zero Fill)

Mem: @x410000b260-0x410000b480 __DATA.__bss (Zero Fill)
LC @2: LC_SEGMENT_64 Mem: @x412000c000-0x410000c000 __IMAGEEND

Mem: @x412800c00e-9x410000ce00 __IMAGEEND.__dummy
LC @3: LC_SEGMENT_64 Mem: @x412000c00e-0x410000c000 __LINKEDIT
LC 84: LC_SYMTAB

Symbol table is at offset @x@ (@), @ entries
String table is at offset @x@ (@), @ bytes

LC 85: LC_UUID UUID: 5873C3Ce-CFB86-30E4-AF57-EBE1B2B12361
LC 86: LC_SOURCE_VERSION Source Version: 374.20.8.0.0
LC 87: LC_UNIXTHREAD Entry Point: ex4leeeels8ls

KPP

* On Boot, two voluntary transitions:
 SMC #2048 (from machine_idle_init): set ARM EL1_VBAR
 SMC #2049 (machine_lockdown): Finalize (and protect) kernel static data.

* Functionality very similar to Samsung’s PKM:
* Traps Floating Point operations (CPACR_EL1)
» Compares protected (r/o) page blake2 hashes to store (by limited budget)
* Also verifies EL1 system registers (TTBR1, VBAR, SCTLR, etc)

* Detailed by @Xerub
* Also explained in detail in *OS Internals Vol Ill, pp 271-276

KPP

* Obvious design fault:

* FPU + IRQ driven operation and limited budget leave HUGE window
 Can quickly patch/unpatch (e.g. TFPO, patch get kernel task to user, unpatch)

* Bypassed ingeniously by Luca Todesco

(fake) TTBR

nnnnnnnnnnnnnnnnnnn

6) Actual TTBR reflects patched
page, but onginal 15 unmodibed! L1 Page Table
5) May
thro: it all |

KTRR

L]] L]
* MUCH better, hardware enforced mechanism in A10+ devices
Listing 13-18; KTRR code (from XNU-4570's .. /machine_routines.c) interleaved with d10 11.0.1 disassembly
. o o . /f lock “:Y":r: i:t inliu:ml
e Hardware immediately detects/kills patching i o
!f!!flloﬁﬁdﬂb;gczﬂ; 1;8. [X25, #536] 7 RB = ,, *(Oxffff£££007652218, amcc_base
fE££££££00711db04 ORR W9, WER, #0xl 7 R9 = Oxl
fEE££££00711db0B STR W9, [X8, #2028) ;8 *(R8 + 2028) = 1
lltin arm igb(ISH SY}:
fE££££££00711db0c ISB 8Y
» Configured by software using KTRR (ror) v e iy
#enc if
}
// lock mmu{) also inlined: x20 = begin, x19 = end. x9 = 1 (from ..db04)
static void lock mmu{uint6d_t begin, uintéd _t end) {
#if def ir:od{K!iRN!i:. INTEGRITY KTRR)
* No (publicly known) bypass since 10.1.1 T R T fa ke e i a———
i i ARME4 REG KTRR UPPER EL1 11 / 83 4 ol c2 4
£££££££00711dbl4 MSR 83 4 C15 C2 4, ¥19 T
{ { ARME4 REC KTRE LOCK i[-'.. 1'#111! / 8 4 =15 2 2
£L££££££00711dbl8 N.ﬁ. 83 4 C15 C2 2, X9 ‘s
/* £lush TLB */
* Exposed by Apple as of XNU-4570 sources
ZEEEEF200711db0c 5B v
£lush mmu tlb{);
£££££££00711dble 158 i
£E£E££££00711db20 BL Oxff£££££0070d4Bac
::k.u KERNEL INTEGRITY conf i:| error

The Future

* Going forward, KTRR isn’t going away, and is preventing:

» Text/code patching
* Rendering the standard set of patches (e.g. TFPO, setuid,..) impossible

* Read-only memory patching
* Other patches (i_can_haz_debugger, AMFI hooks, Sandbox platform profile) impossible

* Trivial kernel code-injection:
* mach_vm_allocate/mach_vm_protect(PROT_EXEC)

... pur si rompe..

 Patch protection still falls short in various aspects, notably “data-only”
* Mutable data (i.e. rw by design) cannot be protected with present methods

* Mutable (ergo patchable) data still holds plenty of kernel structures:
« struct proc: Process control blocks, including credentials, Kauth & MACF labels
« struct vnode: Loaded inodes, including open file metadata
e Unified Buffer Cache: Including file data, code signature blobs & entitlements
* 10*: 10Kit objects, providing vtables aplenty and code execution primitives

Fortunately...

 Publicly disclosed vulnerabilities, notably lan Beer’s, now give “TFP0O”
* Method was used forever in jailbreaks, but never before “standardized” in PoCs

* More accurately, the kernel_task port is smuggled to userland, providing:
» Task APIs enable control over task aspects, specifically kernel threads
 mach_vm®* APIs manipulating kernel memory (subject to patching restrictions)

* Name stuck because of traditional task_for_pid(..,0..) patch.

* To get an idea: g.v. miscellaneous MIG .defs in /usr/include/mach

Unfortunately...

* Access to kernel task is just the beginning
* With great power comes great responsibility
* Open source nature of PoC exploits leads to cut/paste low quality JBs

* Kernel memory, when touched the wrong way, leads to panics

QiLin (BEER)

» Attempt to “standardize” JBs with a simple, reusable library

* The QiLin jailbreak toolkit “drives” LiberTV/LiberiOS/LiberWatchee

 Also drives Technologeeks’ Xn00p (XNU kernel debug tool, coming soon)

* Minimalistic (“dev”) jailbreaks (no Cydia ©) but rock solid stability
* Extensible API, allowing a jailbreak in 10 lines of code or less.

* Not open source (yet), but fully documented with public API.

QiLin (BEER)

* Only requirement is the kernel _task port

* Alternatively: Provide your own exploit (=kernel mem r/w primitives)
 Int readKernelMemory(uint64 t Address, uint64 t Len, void **To);
 Int writeKernelMemory(uint64 t Address, uint64 _t Len, void *From);

» Useful in earlier stages of exploit development, when port is not yet obtainable

* Provides tested, reusable code to achieve most jailbreaking tasks

* Core is also undetectable
* Tip: Treat “jailbreak detection” claimz suspiciously

Utility Functions

* Symbolicating the kernel:

e *OS XNU provides some 4,500 symbols, which it must export for kexts
* By comparison, MacOS XNU has well over 20,000...

* Some exports very useful (e.g. _kernproc, rootvnode), but many missing

* Most jailbreaks hardcode addresses and slide, which is tedious
* Requires symbolicating each of the i-Device variants to determine specific addresses..

 Solution: Harness joker’s engine (disarm+machlib)
* Works directly on the in-device /S/L/C/com.apple.kernelcaches/kernelcache
» Also accessible when app is sandboxed (i.e. pre-exploitation)

Utility Functions

e Structure offsets:
* Apple continually modifies (and re-orders) proc, task, and other structs
* Most jailbreaks hard-code field offsets, and complicate code.

 Solution: Reconstruct all kernel headers in user mode
 Painful, but only needed to do it once...
* Hopefully forward compatible for whatever XNU-5123 or higher bring..

* Will just copy kernel headers and recompile

Kernel (PID 0) struct proc

Exported in XNU’s symbol
table (found with jtool —S)

-Oxlo

0x18

0x100

launchd (PID 1) struct proc

0x78

struct ucred

0x3a0

— ... other processes, ascending..

struct task

» .. To MACF label

Utility Functions

 pid_t findP1dOfProcess (char *ProcName)

* Get process list
* Match by proc_name(pid,...)

« uint64_t getProcStructForPid(pid_t Whom);
 Start at kernproc (exported symbol) working backwards
e Checkif p_pid matches requested PID
* Return address of struct proc to caller

e uint64_t getTaskStructForPid(Pid);
* psAddr = getProcStructForPid(Pid);
 readKernelMemory (psAddr, sizeof (struct proc), &p);
 return (p-task);

Utility Functions

 ulnt64 _t getAddressOfPort(pid _t Pid, mach_port name t P)

taskStructAddr = getTaskStructForPid(Pid);

Traverse itk_space->is_table, inspecting ipc_entry structs

Return address to caller on (entry.ie_bits >> 24) and iterator match

More reliable than CVE-2017-13865

Utility Functions

* Int setTFPOAsHostSpecialPort4d (void);
* Method devised by Pangu Team
* Allows access to kernel_task for any root owned process

e Optional, and not recommended
* Greatly compromises system security
* | needed it for xn00p, also useful for other kernel mem inspection tools

Problem: Remounting root filesystem

* Jailbreaks require rw / partition if they are to achieve:
* System hard-coded default manipulation
* Easier persistence
* Execution of unsandboxed binaries from subdirectories of /

Solution: Flag Flipping

* Method publicized by @Xerub:

* easily circumvents poor implementation:

* Remove MINT_ROOQOTFS flag
* Remount RW

* Add MNT_ROOTFS flags

* Already hardened by Apple ®
* APFS driver panics
e Other creative solutions may endure

int remountRootFS (void)

// Beed these so struct wvnode is properly defined:
i+ 0x00 */ LIST HEAD(buflists, buf);
i* Ox10 +/ typedef woid *kauth action t ;
i+ Ox18 *f typedef struct {
uintf4 t x[2];
/v 0x28 */ } lck mtx t;

#if © f/ cut/paste struct vnode (bsd/sys/vnode internal.h) bere (omitted for brevity)
struct vnode |

f* 0x00 */ Ick mtx t v_lock; /* wvoode mutex */
/* 0x28 */ TAILQ ENTRY(vnode) v_freelist; /* ynode freelist #=/
/* 0x38 =/ TAILQ ENTRY(vnade) v _mntvnodes; /+* wvnodes for mount point #/
/* Ox4B8 */ TAILQ HEAD{, namecache) v _ncchildren; /* name cache entries that regard us as their
/* Ox58 =/ LIST HEAD(, namecache) v_nclinks; /* name cache entries that name this vnode =/
f* Oxd8 *f mount t v _mount; /* ptr to vfs we are in */

|3

ff mount t (Struct mount *) can similarly be obtained from bsd/sys/mount internal.h
/f The specific mount flags are a uwintd2 t at offset Ox70

/7 wWhy bother with a patchfinder when AAPL still exports this for ua? i-)
uint64_t rootVnodeAddr = findEernelSymbol(” rootvnode™);

uintéd t *actual Vaodehddr;

struct vnode *rootwvnode = 0;

char *v_mount;

gtatus{ Attempting to remount rootfs...\n");

readiernelMemory (rootVnodeAddr, sizeof(void *), tactualVnodedddr);

readEernel Memory (“actual VnodeAddr, sizeof(struct wvnode), krootwnode);
readfernelMemory (rootvnode->v_mount, 0x100, &v_mount);

// Disable MNT ROOTFS momentarily, remounts , and then flips the flag back
uwint32 t mountFlags = (*{uint32 t *){v _mount + Ox70)) & -(MNT ROOTFS | MNT RDONLY);

writeRernelMemory({((char 4)rootvnode->v mount) + O0x70 ,sizeof({mountFlags), EmountFlags);:
char *“opts = strdup(”/dev/diskOslsl");

ff Hot enough to just change the MNT RDONLY flag - we have to call

// mount (2) again, to refresh the kermel code paths for mounting..

int re = mount {"apfs”, "/", HMNT UPDATE, (void *)iopts);

printf{"RC: %d (flags: Ox%x) %= \n", rec, mountFlags, strerror{ercno));

mountFlage |= MNT ROOTFS;
vriteRernelMemory(((char *)rootvoode->v mount) + O0x70 ,sizeof(mount¥lags), EmountFlags);

Jf puick test:
int £d = open (" /test.txt", O TRUNC| O _CREAT);
if (fd < 0) { error (“Failed to remount /"); }

else {
status("Mounted / as read write :-)\n");
unlink{"/test.txt"); // clean up
¥

return 0;

Problem: task conversion APls

 iOS 11 adds task_conversion_eval in order to restrict task port access:

Listing 25-18: The task_conversion_ewval function (from osfmk/kern/ipc_tt.c)

/ kern_return_t task_conversion_eval(task_t caller, task_t wvictim)
{
[*
* Tagsks are allowed to resolve their own task ports, and the kernel is
* allowed to resolve anyone's task port.
*/
if (caller == kernel_task) { return KERN_SUCCESS; }

if (caller == victim) { return KERN_SUCCESS; }
[*
* Only the kernel can can resolve the kernel's task port. We've established
* by this point that the caller is not kernel_task.
*/
if (victim == kernel_task) { return KERN_INVALID SECURITY; }
#if CONFIG_EMBEDDED
/%
* On embedded platforms, only a platform binary can resolve the task port
* of another platform binary.
*/
if ((victim->t_flags & TF_PLATFORM) && !(caller->t_flags & TF_PLATFORM)) {
#if SECURE_KERNEL
return KERN_INVALID_ SECURITY;
#else
if (cs_relax platform task ports) {
return KERN_SUCCESS;
} else { return KERN_INVALID SECURITY; }
#endif /* SECURE_KERNEL */

#endif /* CONFIG_EMBEDDED */
return KERN SUCCESS;

N\

Solution: Platformization

 platformizePID(pid_t Blessed)
 Locates struct proc, corresponding task, and flips TF_PLATFORM in t_flags (0x3a8)

* Especially useful for debugserver:

* Apple’s provided debugserver binary (from DDI) still needs to be resigned:
* Remove seatbelt-profile
* Enable task_for_pid-allow and run-unsigned-code (+ platform-application)

Problem: Sandbox

* 3rd party applications are stringently containerized by sandbox
 Kext nitpicks and inspects 130+/~340 possible MACF hooks

e *OS doesn’t have SIP, but platform profile is just as bad:

* No execution in /tmp, /var (outside containers)
* Also prevents “untrusted binaries” from being spawned by anyone save launchd

Solution: ShaiHulud

* Most Sandbox checks make exemption for kernel credentials

* Simple idea: Copy kernel credentials over those of process
* Ok to link instead of copy, since kernproc exits last anyway
* Impact: immediate unsandboxing

* (but still subject to platform profile restrictions) THE INTERNATIONAL BESTSELLER

SANDWORMS OF

BRIAN HERBERT AND
KEVIN J. ANDERSON

And more sandbox annoyances

e Sandbox platform-profiles restricts “untrusted” binaries to launchd
* j.e. if you're not a platform application, your PPID needs to be 1

* To get around:

» Reparent exec’ed binary to 1 before sandbox hook is hit
Or

* Self-sign yourself with <platform-application> <true/>.

 Platform profile can still be...uhm.. persuaded, but not by QiLin.
(not a good idea to blow a useful technique)

Problem: Entitlements

* As of somewhere in iOS 7 or 8, Apple started using entitlements
 Stored in special blob (#5) inside code signature
* Loaded into kernel memory (UBC) when code signature is validated

* Since then, number of entitlements has exploded
* The entitlement database can be used to figure out entitlement holders

Solution (I): Injecting

* With kernel mutable data, we can overwrite UBC easily:
 pidAddr = getProcStructForPid(pid)
 blobAddr = LocateCodeSigningBlobForProcAtAddr(pidAddr)
 readKernelMemory (blobAddr)
« Edit csb_entitlements

e Can verify method works with csops(2) call

Solution (|

Injecting

* Not that simple for AMFI-enforced entitlements (e.g. task _for_pid)

Figure 25-14: The AMFI Entitlement dictionary, in its MACF label slot

* AMFI.kext stores entitlements OSDictionary in 0-th MACF label slot

Figure 25-15: The AMFI MAC policy label slot, revealed

From proc.. (0x100)

OSDictionary

0x10 *(index)

MAC_FLAG_INITIALIZED
0!8!!““003!&10)“ 01 00 00 00 00 00 00 00 ac
02109b20 00 00 00 00 00 0D 0O 00
Ol!!!flllllﬂildﬂ:llﬂ 24 3f 2 81 01 00 00 00 00 od Of cO 01 00 00 00 [$7....

OxfffL£££02200078 02
Oxf££££££00267ac10 00 00 00 00 05 00 00 00 08
Ox££LELEEO0267aC20 m.g

00301eb80 with 1
OxELLL£££0033cfebl

Ox£LLE£££00301eb90 0 an33cf2e0
Ox££L££££00301ebal D ba2740
Ox££LE£££00301ebb0 0 67abd0

Ox£££££££00301ebc0 Frf££000cadfa0 | Oxf£L££££0033cE7c0
Ox£L££E£££00301ebd0 00 00 uo 00 00 00 00 00[00 |00 00 00 00 00 00 00

Dict Entry 0: OSSymbol @0xfffffff0010cfded
|—. xE££££££023280fe0 59 00 58 00 01 c0 05 00 ..u... Ce i aone
Oxfffff££0010cEdf0 Oxfffff££02229da54 ef be ad de ef be ad de T.)".........cns

String ROxffff£££0010cfded - flags: Oxl, Length: Ox17 lpplic-tiun-idmtuuz

Dict 11 OSi Oxf££££££002bBO5SE0
Ox£LEE£££023280fe0 03 00 03 00 00 00 09 00 ..(#ecuvuuvvnnan
2a0 £ =

Dict Entry 2: 0SSymbol @0xfffffff002bBOI6O

DxfEFEE££023280f80 03 00 03 00 00 €0 03 00 .. (#.cvvneinens
o OxfELEEE£002997540 of be ad de of be ad de fu...........out
!!l!!!ﬂﬂmﬂlsﬂ - flags: 0x0, Length: Oxf “"get-task-allow"

Dict 3 Oxf£fE£££001648740
DxfELEEE£023280f0 44 00 44 00 00 e0 05 00 ..(#....D.D.
16d8720 ef be ad de ef be ad de .Meccovunss

Dict Entry 4: OSSymbol 0xffffff£000cadfed
—*[0x£££ff££000cadfel xf££L£££023280fe0 a3 01 a0 01 01 40 09 00 ..(#.........0..
| OxfELELE£000cadff0 OxfE£££££022178851 ef be ad de ef be ad de Q.."...cuuvvnnnn
. String & - flags: Oxl, Length: 0x25 “com.apple.private.signing-identifier”

Solution (Il): Borrowing!

e But wait — Apple already provides entitled, signed binaries!
* MUCH simpler to:

* spawn entitled binary (possibly suspended) if not already executing

e Locate struct proc entry Figure 25-17: Borrowing entitlements from sysdiagnose (1)

» Copy over kauth creds (instant uid/gid) int sdPID = execCommand("/usr/bin/sysdiagnose”, "-u’, NULL, NULL,NULL,NULL);
* Get MACF labels (AMFI (0), Sandbox(1)) for free! o & L Y S Heh ey s s

* Profit e e e

* Good practice: Recover original credentials // Read domor's credentials

readKernelMemory (sdProcStruct + offsetof(struct proc, p ucred),
sizeof (void *),
&sdCredaddr) ;

// Usurp donor's credentials
uint64 t origCreds = ShaiHuludMe(*sdCredAddr);

* Like ShaiHulud, but on user-mode processes

/* Perform operation, e.g. task for pid() */

/* Revert to original credentials */

kill (sdPID, SIGKILL); // Don't need our donor anymore - thanks, sucker!
ShaiHuludMe(origCreds);

Problem: AMFI

* Sworn nemesis of jailbreakers everywhere, enforces code signing
* MACF ...execve hook called on every process execution
e KEXT validates ad-hoc signatures against trust cache(s)

* User-mode lackey daemon (amfid) validates third party signatures

amfid loads libmis.dylib

A I\/I F | a n d fri e n d S to perform validation

User mode process

A

Process perfoms a system

call (or mach trap)

A 4

sysent/mach_trap_table
Corresponding function in

A

kernel is called from table

\ 4

Syscall/trap #n

Function calls out to Mandatory 3
Access Control Framework

MACF

MACF checks if any policy modules requestedto ——

hook the particular functionality in their policy
(recall: exec eventually called check _signature)

Trust Cache

L AMFI looks up CDHash of
Mach-0 in its trust cache

(for adhoc binaries)

\ 4

for profile evaluation, and
mach messages sandboxd

Only if all MACF modules approve, amfid sandboxd
syscall/mach_trap will be executed
Libmis.dylib
yY T A 1
I | 1
If not adhoc, AMFI mach I | : I
o . | 1 1
messages amfid to verify | | : |
CMS (RFC3852) blob | : I 1
I |
1 | : 1
AMFI hooks : N | :
..check_signature o) | 1
» AppleMobileFilelntegrity : :
: Sandbox uses AppleMatch

|

|

|

|

|

|

1

A

The sandbox modules hooks
most other functions

AppleMatch

34

Solution (I): Overwrite loadable trust cache

 AMFI maintains a “trust cache” for Apple’s own platform binaries
* Part of __ TEXT, so therefore read-only and subject to patch protection

* But.. AMFI also (foolishly) maintains another trust cache:
* Used for DeveloperDiskimage binaries
* Loaded by mobile storage mounter (with entitlement)
* By definition, resides in mutable memory!

* Method publicized by Xerub injects CDHashes into (other) cache
* As a bonus, binaries automatically bestowed platform status

* MUST go away in iOS 12

* (fool me once, shame on me.. Fool me five times ... enough already!)

Solution (I1): AMFI-Debilitate

* For third party binaries, validation is done in user mode amfid

* Dimwit daemon outsources decision making to libmis.dylib

* Traditionally, MISValidateSignature would perform complex validation
 Certificate check, UPPs, online_auth_agent, etc... and...
* just return 0/1 ©
* Bypassed numerous times, from evasiOn 6 to Pangu 9.3 (X&)

* As of iOS 10, MISVal idateSignatureAndCopyInfo also populates hash

* Still trivial to get by, as demonstrated by lan Beer’s mach_portal
* Hijack AMFId’s exception ports (or inject exception thread into it)
* Overwrite MISValidateSignatureAndCopylnfo la_symbol ptr

Solution (I1): AMFI-Debilitate

* QiLin’s int castrateAmfid(void) automatically does all this..
 Amfid marked CS_HARD|CS_KILL, but who cares when you can overwrite?

 AMFldebilitate daemon can persist after Liber™ JB-Apps exit:
» Spawned as platformized binary by QiLin (provided in binpack tar)
* Hijacks amfid’s exception ports to hook MVSACI
* Also registers knote on amfid (to track exit due to launchd kill)

* NOT a jailbreakd, but can be adapted easily to one:
 AMFId’s upcall follows MACF ...execve hook, so great for process notifications

Problem: kernel execution primitive

* Advanced exploitation relies on kernel execution, e.g.
* kalloc()..
* pmem APIs..
e General ability to invoke kernel functions with arbitrary arguments

* lan Beer provides a great method for exec but..
» Relies on proc_pidinfo(LISTUPTRS) which only works for 11.0-11.1.2

1) An ephemeral port is 9) Any arbitrary function in kernel
created in user mode space can now be called through
fake I0UserClient, at method O.

struct ipc_port 3) Port is polymorphed into an 6) Fake object constructed with a
IKOT_IOKIT_CONNECT (IOUserClient) fake I0UserClient vtable

4) Receiver IPC space is set to
the kernel_ipc_space

=)

0x60

0x68

5) Underlying kobject linked to a

2) In kernel address of port fake 10UserClient object 0x40

retrieved using proc_info

memory disclosure 0x48
8) First argument and function 7) csblob_get_cdhash is usedin
pointer placed at 0x40 place of getExternal TrapForIndex

as it always returns (x0 + 0x40)

Solution: Kernel-version agnostic kexec()

* Method very similar to Beer’s:

* Create an arbitrary IOUserClient (AMFI chosen for a touch of irony)
» getAddressOfPort(pid_t Pid, mach_port name_t I10UserClientName);

* Clone IOUserClient object in memory to fully writable memory
* Dynamically modify object’s vtable entry to allow any function & arguments

* Especially useful with kernel symbols
e Can call any function known to joker (and that’s most useful ones)

Take away: A full set of reusable tools

 Put all of these together, and you have a full jailbreak, or more*
* Use it (subject to minimal license), submit bugs/requests, help improve
 Utility functions will be forward compatible indefinitely

* Protection workarounds will likely be closed by Apple at some point.

* - But still, no Cydia ©

Message to Apple

* Valiant efforts, guys, but NONE OF IT IS ACTUALLY ANY USEFUL

* You’re just making it a pain to JB, but not solving real threat — APTs
* Unsandboxed uid 501 (mobile) is usually enough for most targeted malware

* Your bug bounty program is an insult
* 50k for an exploit chain that fetches x100 times that in open market?

* Open up *0OS for researchers and they’ll beat a path to your door
* Also iron out some design flaws in an otherwise superbly writ OS

Greets

* The Jailbreaking community, especially @PanguTeam & @S1guza

e @pimskeks — A giant walks among us
» @Xerub — stop open sourcing everything and killing good methods ©

* @i41lnbeer — A brilliant mind working for the wrong people

All this and more in..

e *OS Internals Trilogy, specifically Volume Il
 http://NewOSXBook.com/
* Volume Il coming later this year with Darwin 18! (MacOS 14/i0S 12)

* Technologeeks.com training:

* MacOS/iOS Internals — Reverse Engineer’s Perspective — 5 day deep dive
* http://Technologeeks.com/OSXRE

e *QOS (in)security — 3 day, applied MacOS and iOS hacking
* http://Technologeeks.com/x0SSec
* Also coming to Vegas right before BlackHat in a special 2-day bootcamp edition!

