
Keynterceptor: Press any key to continue*

Niels van Dijkhuizen, MSc.1

Abstract— The past decade has taught us that there are
quite some attacks vectors on USB. These vary from hardware
key-logging to driver fuzzing and from power surge injection
to network traffic re-routing. In addition to addressing these
issues, the security community has also tried to fix some of these.
Several defensive hard- and software tools focus on a particular
piece of the puzzle. However none, is able to completely mitigate
the risks that involves the everyday use of USB in our lives.

Key stroke injectors like Rubber Ducky and MalDuino have a
big disadvantage: they are not very stealthy. When no protection
is in place, there is a big change the end-user will notice
something fishy is going on. Proper USB Class filtering policies
and a daemon that monitors typing speed will put this kind
of attacks to a halt. To bypass both the user’s attention and
current security mechanisms, I have developed Keynterceptor.
This is a proof of concept keyboard implant that is able to
capture and inject keystrokes and communicate over the air
via a back-channel while keeping the local time.

Since Keynterceptor is made up from very affordable, off-
the-shelf electronic parts, it is likely that such an attack tool
can be created and used by someone with few resources.

I will demonstrate the effectiveness of Keynterceptor in a
real-world scenario where an end-point gets compromised.

I. INTRODUCTION

In the past 10 years or so, security researchers have pre-
sented multiple attacks on the Universal Serial Bus (USB).
Section II will cover those techniques in chronological order.
With good reason people have claimed that USB is fun-
damentally broken. Fortunately, the community responded
with workarounds to circumvent some of these problems.
Section III will cover defensive tools that are freely available
at the moment.

In Section IV the idea behind the proof-of-concept Keyn-
terceptor will be presented. The subsections will cover the
actual implementation and tested scenario.

Finally, the conclusion and possible future work is pre-
sented in section V.

II. A DECADE OF USB PROBLEMS

With physical access to a computer, an easy way to harvest
a user’s credentials and other sensitive information is to place
a keylogger. Often times these keyloggers capture the first
x-thousand keystrokes. The oldest reference to a USB based
keylogger I could find dates from 2005 (KeyGhost USB
Keylogger) [1].

With the introduction of Microsoft Windows 95, the
Windows line of Operating Systems include a feature called
autorun or autoplay (depending on the used version of
the OS) to automatically start an executable binary from

*This work was not supported by any organization
1Niels is a lead analyst at the CSIRT of a large organization in the

Netherlands [niels.vandijkhuizen@os3.nl].

various media. Microsoft research shows [2] that this feature
was very popular as propagation method for malware. With
Windows 95 up to XP, the default action with CD-ROM
drives was to follow autorun.inf instructions without any
user interaction. SanDisk and M-Systems developed the U3
technology which added a virtual CD-ROM drive to USB
flash drives in order to enable autorun/autoplay-functionality
(from now on called autorun). In 2006 HAK5 introduced the
USB Switchblade [3] [4] to abuse this U3 technology in order
to automatically steal LM hashes from systems. Later on,
they expanded the Switchblade features with USB Hacksaw
[5].

Due to the quick spreading of the Conficker worm in
2008/2009, the general public learned about the dangers of
the autorun feature. In 2010 Darren Kitchen and Robin Wood
(DigiNinja) from HAK5 and Adrian Crenshaw (Irongeek)
realised many people therefore disabled autorun. Cren-
shaw created Programmable HID USB Keystroke Dongle
(PHUKD) [6] where HID stands for Human Input Device and
HAK5 created a commercial product called Rubber Ducky
[7]. Both are keystroke injection tools that where based on
the Teensy development board. When these are inserted in
a USB port, they autonomously start typing commands at
very high speed for the specified Operating System in order
to quickly take control of the machine.

In 2011 Crenshaw combined his earlier research on both
PS/2 and USB keyloggers with his PHUKD project in order
to capture and inject keystrokes with the same device. He
called this project Hardware Keylogger/PHUKD Hybrid [8]
and as we will see in section IV-A I have continued research
in this direction. When I started my project by the end of
2015, I did not know about Crenshaw’s work: therefore, I
did not use any of his code.

In 2012 Travis Goodspeed presented his FaceDancer [9],
a device to allow USB devices to be written in host-side
Python. This way, fast prototyping and fuzzing of USB
device drivers are within reach for many people. An example
of USB driver fuzzing and its implications: Skype will crash
if it finds unexpected HID descriptors.

In 2014 Karsten Nohl et al. (SRLabs.de) presented a so-
phisticated attack that reprograms embedded firmware to give
existing USB devices a different and covert capabilities. They
called the concept BadUSB [10] and later that year Adam
Caudill and Brandon Wilson implemented exploit code called
Psychson [11] for the Phison USB 3 controller to further
demonstrate the feasibility of BadUSB. Nohl et al. describe
scenarios with keystroke injectors (like Rubber Ducky) and
rogue network adapters that spoof traffic amongst others.

Later that year Samy Kamkar presented USBDriveby [12],

which is essentially a keystroke injector with HID Mouse
emulation.

In 2015 a Russian hacker under the name Dark Purple
created a USB Killer Device [13] [14]. This device charges
capacitors via the power lines of a USB port until they
are fully charged. It then releases the charge (with a high
negative voltage) over the data-lines into the USB port. Since
the electrical protection of USB ports is poor, the charge will
often reach the CPU, rendering the device useless.

Also in 2015, HAK5 introduced a covert Systems Ad-
ministration and Penetration Testing tool called the LAN
Turtle [15]. This is a little computer with the form factor
of a generic USB Ethernet Adapter that essentially behaves
as a rogue computer in the network. Rob Fuller (Mubix)
discovered in 2016 that a Lan Turtle (or USB Armory for
that matter) combined with DHCP with WPAD and Laurent
Gaffi’s Responder could harvest credentials from a locked
computer [16] [17].

2016 is also the year Samy Kamkar presented his Poison-
tap project [18] which consists of a Raspberry Pi Zero with
Node.js. Poisontab presents itself to a locked computer as
a low priority network adapter. Through DHCP it tells the
targeted machine the local network range is the complete
IPv4 space, and therefore overrules the other network inter-
faces. The browser cache is then poisoned for commonly
used domains and cookies are harvested from the locked
machine.

Also in 2016, David Kierznowski presented his research
on a USB Man in the Middle attack called BadUSB 2.0 [19].
In his research he uses two FaceDancers: one to emulate a
USB Host and one to emulate a USB peripheral. A Mediating
Computer in between the FaceDancers controls what infor-
mation gets across the lines. Kierzonwski implementation
was able to attack HID-devices.

In 2017 HAK5 introduced its new USB pen-testing plat-
form called Bash Bunny [20]. This device can emulate
Ethernet, Serial port, Flash storage and HID devices with
the help of an automation language. This makes it a versatile
USB pen-testing platform.

Finally the Cactus WHID injector developed by Luca
Bongiorni and Corey Harding [21] is a WiFi remotely-
controlled HID Emulator, based on the popular ESP8266
chip.

A. Wireless HIDs

A related topic on USB security is MouseJacking as it
is called nowadays. The focus of this type of attacks is
at the Radio Frequency communication part of wireless
HIDs rather than at the USB side of things. However, it
is noteworthy that Max Moser and Philipp Schrödel from
remote-exploit.org had already presented wireless keyboard
attacks in 2008 [22]. They continued their work and created
Keykeriki in 2009 [23] [24]. GoodFET.nrf (2011) [25] from
Goodspeed and KeySweeper (2015) from Kamkar [26] are
also able to sniff and inject keystokes from/to some of
the more affordable Microsoft wireless keyboards. Finally
in 2016, Bastille Research created a Whitepaper describing

MouseJacking [27] and shared their code on Github with
instructions to create a wireless “Rubber Ducky” [28].

III. CURRENT DEFENCES

When we generalise the attacks from Section II the fol-
lowing categories may be used:

• Autorun attacks
• USB Power surge attacks
• USB Keyloggers
• MouseJacking
• Rogue USB devices (BadUSB)

A. Autorun attacks

Since Conficker, autorun attacks - even with U3 technol-
ogy - have become quite hard (but not impossible) to perform
[2]. Good end-point protection (like Anti-virus software)
still has its use for known malware. It would be a good
practice to use a Scrubber like CIRCLean [29] to retrieve
safe documents from unknown mass storage devices.

B. USB Power surge attacks

Even though there is not much research in this field,
it seems that Power surge attacks (like the USB Killer
performs), are defeatable by using an opto-coupler. There are
USB 3.0 extenders available, that use fiber-optics to transfer
the originally electrical data. These devices are priced around
$100,- which is much less than your average laptop or
workstation. The extender will break when such an attack is
mounted, but since the charge will be stopped at the transit,
the computer will survive.

C. USB Keyloggers

The quality of USB Keyloggers may vary. The cheap ones
may present themselves with a different USB ID than the
original USB device, the better ones operate transparently.
The latter category is therefore nearly impossible to detect
with software.

D. MouseJacking

It is important to know which wireless technology to use
in certain contexts. It would be unwise to use wireless HID
devices within highly sensitive environments. On the other
hand, if the used wireless protocol is not known for having
security issues, one might use it for classed documents
up to a certain level. I.e. NIST describes BlueTooth 4.1
BR/EDR, Security Mode 4, Level 4 as a relatively secure
communications method [30].

E. Rogue USB devices (BadUSB)

Fortunately there has been quite some research in the field
of Rogue USB device detection. Robert Fisk developed a
BadUSB firewall called USG [31], which will block sponta-
neous re-enumeration of connected USB devices and it will
only allow certain device classes. Unfortunately, if a device
presents all sub devices directly without later enumeration,
bad intent will not be detected with USG . It currently
does not protect against keystroke injection attacks and

unfortunately the line speed it too low to be practical for
large file transfers.

Dominic Spill developed a USB Man in the Middle
tool for affordable ARM-based boards like the BeagleBone
Black. The project is called USBProxy [32], which is cur-
rently able to function as a USB mass storage write-protector.
Though a little faster then USG, this solution needs more
development in order to function as a generic BadUSB
firewall.

Another project that uses the BeagleBone Black is Good-
DOG by Tony DiCola. His project specifically filters out non
mass-storage devices [33].

The USBGuard software framework from Daniel Kopeček
[34] helps to protect GNU/Linux machines against BadUSB
by applying a white- or blacklist based on USB device
attributes. It can fingerprint a device by creating a SHA-
256 hash from the device descriptor data (stored in base64
encoding). It does not monitor the behaviour of the device.

Another BadUSB defence that specifically targets the
Linux kernel, is the GRSecurity set of kernel-patches [35]
[36]. GRSecurity has the option to:

• Deny new USB connections after activation (toggle)
• Reject all USB devices not connected at boot time

This toggling can be performed from userland. USBLockout
by xSmurf [37] monitors your user session and triggers
this Grsecurity Deny New USB feature when (un)locking
a Desktop.

For Windows there is Beamgun by Josh Lospinoso [38],
which is a daemon that monitors USB device insertions.
When a new network adapter or HID devices is inserted,
it will disable this new device. Unfortunately, if a device is
already known to the system, it will not be able to block it.

Another Windows based solution is Duckhunt from Pedro
M. Sosa [39]. This tool monitors for inhumanly fast typing
by HID devices and blocks the responsible device if this
behaviour is detected.

IV. KEYNTERCEPTOR

After having described important developments on both
the attack and defence side of USB technology, in this section
will I present some new insights and describe the actual
implementation of a keyboard implant. This technique and
Proof of Concept implementation will be called Keyntercep-
tor.

A. The idea

Key stroke injectors like Rubber Ducky and MalDuino
have a big disadvantage: they are not very stealthy. Even
when such a device initially presents itself as a mass storage
device only to add an additional keyboard at some point
in the future, it has no means to know if the user is still
actively working at that computer. When the computer has
no USB defences in place, there’s a big chance the end-
user will notice something fishy is going on. Proper USB
Class filtering policies (like USBGuard) and a daemon that
monitors typing speed (like Duckhunt) will put this kind of
attacks to a halt.

To avoid user attention I thought of a keyboard implant
that combines the strengths of a keylogger and a key stroke
injector. This way the interceptor is out of sight (either typing
on the keyboard or in-line with the keyboard underneath
a desk). As long as a user is typing on the keyboard, we
‘know’ he or she is still there. And while the implant captures
keystrokes, credentials can be collected. When a Real Time
Clock (RTC from now on) is added to the implant, we can
program it to inject payloads with the captured credentials
only outside of the target’s regular computing time.

Since a keyboard is a commonly trusted device that is
not disconnected often, it will be present at boot time -
bypassing protections in the line of the GRSecurity patches.
To bypass USB device filters like USBGuard, one simply
has to clone the USB descriptors of the targeted keyboard. In
large organizations, specific brands and models of keyboards
are predominant. This makes it feasible to modify such a
keyboard model or clone its descriptors. In order to stay
under the radar of monitoring daemons like Duckhunt, the
keystroke injection routine of the implant should emulate
user typing. This can be realized in a rather simple way. Only
when a monitoring daemon profiles the typing behaviour of
the end-user (called keystroke dynamics within the field of
behavioural biometrics), this evasion might fail.

B. The implementation

Having outlined the most important features (i.e. being
covert), we need to define some design goals. The PoC needs
to be:

• Affordable - In order to proof a low level of adversary
effort;

• Autonomous - Once deployed, it should be able to reach
its target without further intervention;

• Small form factor - It should be feasible to actually
embed the implant in a keyboard;

• RF Backchannel communication - Though losing some
stealthiness, this greatly enhances attack scenarios.

To illustrate two of the requirements: Kierznowski’s BadUSB
2.0 needs a Mediating Computer, therefore it cannot both
have a small form factor and be autonomous.

To speed up development, I chose to prototype with
existing off-the-shelf modules instead of designing my own
printed circuit board. The hardware schematics are shown
in Figure 1. For the core of the project I used the 8 bit
Teensy 2.0 because of its small form factor and Arduino IDE
support. In order to interface over SPI with a MAX3421E
USB Host controller the Teensy had to be modified to operate
at 3.3V. To achieve this the teensy also has to run half speed
(8MHz).

To keep track of the local time, I used a battery-backed
DS3231 Real Time Clock chip that contains a very accurate
crystal. It communicates with the Teensy over I2C as does the
24LC256 (256Kb) EEPROM, which is used for configuration
storage. An HC-12 module was used for optional backchan-
nel communication. This RF transceiver module operates at
433Mhz and interfaces with the Teensy via the UART/TTL
interface.

Apart from the default Arduino/Teensy libraries, I used the
USB Host Shield 2.0 library from Circuits@Home [40] and
the Arduino DS3232RTC Library v1.0 from Jack Christensen
[41].

GND
0
1 SCLK

2 MOSI

3 MISO

4
5 SCL

6 SDA

7 INT2

8
9
10

3.3V
21
20
19
18
17
16

RX 15
TX 14

13
12
11

Teensy 2.0

1 SS

2 MOSI

3 MISO

4 SCLK

5
6
7
8
9 3.3V

10
11 GND

12

INT 24
23
22
21
20
19
18
17

GND 16
RESET 15

14
13

USB Host

HC-12 | 433 Mhz UART

1 VCC

2 GND

3 RX

4 TX

5 SET

24LC256 | EEPROM

1 A0

2 A1

3 A2

4 Vss

Vcc 8
WP 7
SCL 6

SDA 5

DS3231 | RTC

Vin
GND
SCL
SDA
BAT
32K
SQW
RST

Fig. 1. The hardware schematics of the Keynterceptor PoC

I created a new USB device composition based on the
Teensy’s USB HID one (shown in the Arduino environ-
ment as: “Keyboard + Mouse + Joystick”). After remov-
ing all mouse and joystick classes from all of the files,
I modified usb.c and usc private.h to reflect the correct
USB descriptors. In my case the ones from an HP Elite
USB Keyboard manufactured by Chicony Electronics. In
order to clone the USB table- and report descriptors, one
can use the lsusb -v -d $vid:$pid and usbhid-dump

-m $vid:$pid command under GNU/Linux respectively. I
also modified usb_keyboard_class::send_now() to add
some random delays to emulate human typing:

int rdelay = rand() % 111;
rdelay += 8;
delay(rdelay);

and added usb_keyboard_class::send_now_quick()

without the delay, for the use of keystroke forwarding.
The serial communication speed of the HC-12 is set to

38400bps [8 data bits, no parity, 1 stop bit] for this project.
19200bps would probably have been fast enough, but the
effective transmission speed over the air is equal (58000bps
with -107dBm receiving sensitivity). When choosing higher
speeds, the effective communication distance gets smaller. In
order to have a good balance between power consumption,
communication distance and speed, the full speed mode
(FU3) was chosen in combination with a transmitting power
of 17 dBm (50mW) instead of the 20 dBm (100mW)
maximum. Keystrokes are sent with 3 bytes per pressed key

(1: the keyModifier value, 2: the key value, 3: a line-feed).

Keyboard only Keynterceptor

min max min max

Voltage 5.03 5.10 4.99 5.09

Amperes 0.00 0.06 0.00 0.10

Fig. 2. The measured voltage and current extremes of the keyboard, with
and without Keynterceptor. The voltages and currents have been measured
separately.

Since the initial USB 1 and 2.0 specifications describe
two types of power sources for powering connected devices,
Keynterceptor has to stay within those boundaries. Low
Power devices get 5V 100mA and High Power devices get
5V 500mA. The USB descriptor of the keyboard I cloned
describes a low power profile, therefore the total power
consumption was measured. Fortunately with the described
implementation the difference between regular keyboard use
and keyboard use with Keynterceptor is small. The drawn
current does not exceed the 100mA limit. Please see the
measured values in Figure 2.

Teensy 2.0 $ 16,00

HC-12 wireless module $ 4,00

USB Host shield $ 8,00

24LC256 EEPROM $ 1,00

DS3231 RTC $ 4,00

MCP1825S regulator $ 1,00

Europrint / LEDs / resistors $ 2,00

Total in US Dollars: $ 36,00

Total in Euro's: € 32,00

Fig. 3. The total costs of the Keynterceptor PoC.

The total cost of the Keynterceptor Proof of Concept lies
around 30 euros. The Teensy is the most expensive part of
the design. When one would mass produce a new PCB that
contains an ATMega32U4, a MAX3421E and a DS3232RTC
with pin headers for a RF communication module like the
HC-12, the costs will be much lower. Since no other pin-
connectors are needed, the resulting device could be made
sufficiently small to function as an implant.

C. The tested scenario

With the hard- and software described in Sections IV-A
and IV-B, there are some scenarios that could be run:

• Remotely control the targeted keyboard over the air
• Autologin with captured credentials
• Inject keystrokes after inactivity
• Block user input with a RF kill-switch (i.e. for a take-

down)
However, to demonstrate some practical use of the Keyn-

terceptor, I thought of a somewhat more complex scenario
that combines most of the above. In the first place, we
add a Keynterceptor companion to the scenario that delivers
a malicious payload to the targeted computer. I chose the

companion to be an 8 dollar NanoPi Neo that runs Ubuntu
Linux. This tiny computer, together with a UMTS/4G dongle
and an HC-12 module is mounted inside an emptied laptop
power adapter. Instead of a regular barrel connector, this
“power adapter” has a RJ45 connector at one end.

Fig. 4. A screenshot of the companion’s web-application

The complete scenario is illustrated in Figure 5 and goes
as follows:

1) The attacker armed with a smartphone and small back-
pack filled with a Keynterceptor + companion goes to
a location of choice - say, an office.

2) When there is an opportunity to reach an empty room,
the companion can be installed nearby a desk with
other power adapters on the ground.

3) Once the companion is up and running, it will connect
over the 4G link with an OpenVPN server.

4) Shortly after installing the companion, the attacker is
able to connect to it trough the OpenVPN tunnel on
the smartphone.

5) The web-application of the companion shows the cur-
rent state of its eth0 interface.

6) The attacker can try various ethernet patches in the
room, until the companion gets an IP address.

7) Once it has an IP, the attacker can select the out-
of-office time range, in which the Keynterceptor may
become active. See Figure 4 for a screenshot of the
application.

8) Now the attacker plugs the Keynterceptor in between
a workstation and a keyboard of choice.

9) The Keynterceptor waits for its configuration by lis-
tening on the HC-12 RF module.

10) Back at the smartphone, the attacker presses send to
transmit the companion’s IP address, operation mode,
and activation time over the 433MHz back-channel to
the Keynterceptor.

11) At this point the Keynterceptor is armed and ready
to capture user credentials, the attacker is done at the
office.

12) Elsewhere, the attacker can connect to the VPN server,
and log into the companion over SSH.

13) All keyboard activities from the user, can now be
monitored. Or in case of a more stealthy campaign,
the attacker can be notified when the target machine is
compromised.

14) In the night, when everyone in the office has left the
building and no keyboard activity is registered for a
long time, Keynterceptor logs into the computer by
itself with the captured credentials - if the workstation
is still on of course.

15) It starts a Powershell and retrieves a payload from the
companion that resides in the same LAN.

16) The targeted machine is compromised and controllable
via the companion (i.e. via a post-exploitation frame-
work like Empire).

V. CONCLUSION

With this paper and corresponding presentation, I claim to
have built a device that is able to overcome the described
problems that classical keystroke injection tools have. I
tested the Keynterceptor against a proper USB device filter
(USBGuard), a keystroke injection monitor (Duckhunt) and
a USB Device Firewall (USG) and was able to bypass their
mechanisms.

The presented solution is indeed affordable. It can operate
on its own and communicate with the outside world over a
RF backchannel. It does not consume too much power, and
with a little effort it can be produced with a small form factor
to function as an implant.

Together with the companion and less than 1000 lines of
C, Python and Perl code, I was able to develop and run a
complete attack scenario (including a reverse shell / post-
exploitation tool). With this scenario I also presented a real-
world use-case for such a device.

I can think of three solutions that effectively stop Keyn-
terceptor:

1) Have two- or multi-factor authentication next to a
password with each computer-unlock action.

2) Present the user with an additional captcha or a “click
the correct picture” challenge to unlock a machine.

3) Use of secure keyboards: one that accepts a client-
certificate and does mutual authentication and encryp-
tion of typed data.

With this little research project, I would like to increase
the ongoing effort to raise awareness on the bad state of USB
and the inherent trust we have in our peripherals.

433 MHz UMTS / 4GK

VPN Server

TARGET ATTACKER

Fig. 5. The complete scenario with Keynterceptor and its companion

A. Hindsight and Future work

In hindsight, I realized the external EEPROM was an
overkill for the couple of bytes I had to store on it. The
Teensy 2.0 already has an EEPROM with 1KB of storage.

I have not taken the effort to secure the backchannel com-
munication, even though the 433MHz UART communication
is a bit obscure, proper encryption would still be necessary
for secure operations. Another area of improvement might
be in the way the USB descriptor cloning is done. With
this project, one has to manually clone the descriptors and
then recompile the project. It would be more user-friendly
to dynamically adjust the descriptors based on what is
connected to the Keynterceptor’s client-side. I would say this
is at least possible with an FPGA, but further research might
show whether this could be achieved with a micro-controller
as well.

REFERENCES

[1] “KeyGhost USB keylogger.” https://web.archive.org/web/
20050205233057/http://www.keyghost.com/USB-Keylogger.
htm.

[2] “Microsoft Security Intelligence Report vol. 11.”
http://download.microsoft.com/download/0/3/3/
0331766E-3FC4-44E5-B1CA-2BDEB58211B8/Microsoft_
Security_Intelligence_Report_volume_11_English.pdf.

[3] “HAK5’s Switchblade.” https://web.archive.org/web/
20070701192836/http://wiki.hak5.org/wiki/USB_
Switchblade.

[4] “HAK5 Forum - Switchblade development.”
https://forums.hak5.org/index.php?/topic/
2361-usb-switchblade-development/.

[5] “HAK5’s USB Hacksaw.” https://web.archive.org/web/
20070514050322/http://wiki.hak5.org:80/wiki/USB_
Hacksaw.

[6] “Adrian Crenshaw’s HUKD.” http://www.irongeek.com/i.php?
page=security/programmable-hid-usb-keystroke-dongle.

[7] “Presentation of HAK5’s USB Rubber Ducky.” http://www.hak5.
org/episodes/episode-709.

[8] “Adrian Crenshaw’s Hardware Keylogger/PHUKD Hybrid.”
http://www.irongeek.com/i.php?page=security/
homemade-hardware-keylogger-phukd.

[9] “Emulating USB Devices with Python - Travis Goodspeed.”
http://travisgoodspeed.blogspot.nl/2012/07/
emulating-usb-devices-with-python.html.

[10] “BadUSB - On accessories that turn evil.” https://srlabs.de/
wp-content/uploads/2014/11/SRLabs-BadUSB-Pacsec-v2.
pdf.

[11] “Psychson - Custom Firmware repository on Github.” https://
github.com/brandonlw/Psychson.

[12] “Samy Kamkar’s USBDriveby.” http://samy.pl/usbdriveby/.
[13] “The original Russian USB Killer post by @Dark purple.” https:

//habrahabr.ru/post/251451/.
[14] “The translated USB Killer post.” https://kukuruku.co/post/

usb-killer/.
[15] “HAK5’s Lan Turtle.” https://hakshop.com/products/

lan-turtle.
[16] “Snagging creds from locked machines - Rob

Fuller.” https://room362.com/post/2016/
snagging-creds-from-locked-machines/.

[17] “Introducing Responder 1.0 - Laurent Gaffié.” https:
//www.trustwave.com/Resources/SpiderLabs-Blog/
Introducing-Responder-1-0/.

[18] “Samy Kamkar’s Poisontap.” https://samy.pl/poisontap/.
[19] “BadUSB 2.0: USB man in the middle attacks -

David Kierznowsk.” https://www.royalholloway.
ac.uk/isg/documents/pdf/technicalreports/2016/
rhul-isg-2016-7-david-kierznowski.pdf.

[20] “HAK5’s Bash Bunny.” https://hakshop.com/products/
bash-bunny.

[21] “whid-injector/WHID.” https://github.com/whid-injector/
WHID.

[22] “27Mhz Wireless Keyboard Analysis Report - Max Moser &
Philipp Schrödel.” https://www.blackhat.com/presentations/
bh-dc-08/Moser/Whitepaper/bh-dc-08-moser-WP.pdf.

[23] “KeyKeriki v1.0 - 27MHz.” http://www.remote-exploit.org/
articles/keykeriki_v1_0_-_27mhz/index.html.

[24] “KeyKeriki v2.0 2.4GHz.” http://www.remote-exploit.org/
articles/keykeriki_v2_0__8211_2_4ghz/index.html.

[25] “goodfet.nrf.” http://goodfet.sourceforge.net/clients/
goodfetnrf/.

[26] “Samy Kamkar’s Keysweeper.” http://samy.pl/keysweeper/.
[27] “Bastille’s MouseJack website.” http://www.mousejack.com/.
[28] “MouseJack device discovery and research tools - repository on

Github.” https://github.com/BastilleResearch/mousejack.
[29] “CIRCLean - USB key sanitizer.” https://www.circl.lu/

projects/CIRCLean/.
[30] “NIST Special Publication 800-121 Rev.2 - Guide to

Bluetooth Security.” http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-121r2.pdf.

[31] “Robert Fisk’s USG repository on Github.” https://github.com/
robertfisk/USG/wiki.

[32] “Dominic Spill’s USB Proxy on Github.” https://github.com/
dominicgs/USBProxy.

[33] “Tony DiCola’s GoodDog repository on Github.” https://github.
com/tdicola/GoodDOG.

[34] “Daniel Kopešek’s USBGuard website.” https://dkopecek.
github.io/usbguard/.

[35] “Grsecurity’s website.” https://www.grsecurity.net.
[36] “Gentoo Linux wiki describing grsecurity patches on USB

security.” https://wiki.gentoo.org/wiki/Allow_only_known_
usb_devices.

[37] “USBlockout subproject of Subgraph.” https://github.com/
subgraph/usblockout.

[38] “Josh Lospinoso’s beamgun repository on Github.” https://
github.com/JLospinoso/beamgun.

[39] “Pedro M. Sosa’s Duckhunt repository on Github.” https://github.
com/pmsosa/duckhunt/.

[40] “Oleg Mazurov’s USB Host Shield 2.0 repository on Github.” https:
//github.com/felis/USB_Host_Shield_2.0/.

[41] “Jack Christensen’s DS3232RTC repository on Github.” https://
github.com/JChristensen/DS3232RTC.

