

Enhancing Deep Learning DGA Detection Models Using Separate Character Embedding

Vikash Yadav Data Scientist, Royal Bank of Canada

Content

• Malware Life Cycle • Domain Generation Algorithm Problem • Traditional Approaches Existing • Machine Learning Approaches Solution • Recurrent Neural Network based detecting technique RŇN • Unified Architecture model • Separate Embedding Model Enhance • Improvement in detecting unknown DGA ment

Malware Life Cycle

Existing

Solution

RŇN

model

Enhànce

ment

- Domain Generation Algorithm
 - Traditional Approaches
 - Machine Learning Approaches
 - Recurrent Neural Network based detecting technique
 - Unified Architecture
 - Separate Embedding Model
 - Improvement in detecting unknown DGA

Life Cycle of a Malware

Initial Compromise

Successful connection to Command & Control Receive instruction to carry out malicious activities

Life Cycle of a Malware

Domain Generation Algorithm (DGA)

 DGA uses a seed value and/or timedependent element to avoid command and control domains or IPs being seized or sinkhole

```
def generate_domain(year, month, day):
    """Generates a domain name for the given date."""
    domain = ""
    for i in range(16):
        year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)
        month = ((month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8)
        day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)
        domain += chr(((year ^ month ^ day) % 25) + 97)
    return domain</pre>
```

Credit: Wikipedia

Problem	 Malware Life Cycle Domain Generation Algorithm
Existing	
RNN model	 Recurrent Neural Network based detecting technique Unified Architecture
Enhance	 Separate Embedding Model Improvement in detecting unknown DGAs

Stopping DGA Malware – traditional approach

- Reverse engineer the binary to identify the DGA
- Blacklist the domain name and IP address of C2 server
- Sinkhole the C2 communication by registering the domain in advance

Stopping DGA Malware – traditional approach

- Reactive
- Time consuming
- Not scalable

Stopping DGA Malware – ML based approach

NXDOMAIN DNS request based detection

• ML approach using handcrafted features

RNN based detection

NXDOMAIN DNS request based detection

- DGA generates a large number of domains of which only a select few are registered to host a C2 server
- A client making requests to a large number of NXDomains is potentially hosting a DGA malware

Credit: Detecting DGA domains with recurrent neural networks and side information

ML approach using handcrafted features

- Entropy, Length of the domain etc.
- Number of vowels vs consonants in the domain
- Periodicity of the request
- Popularity of the domain
- Total byte sent and received

RNN based detection

- No explicit feature engineering required
- Proactive
- Easy to build and deploy
- Easy to retrain outdated models
- Highly scalable
- Highly accurate

INPUT DOMAINS

google.com ofdhiydrrttpblp.com yahoo.com puciftnfkplcbhp.net amazon.com riddenproduce.ru

Normal Domains

amazon.com yahoo.com

Random Domains

puciftnfkplcbhp.net ofdhiydrrttpblp.com riddenproduce.ru

- Malware Life Cycle
- Domain Generation Algorithm
 - Traditional Approaches
 - Machine Learning Approaches
- RNN model

Enhànce

ment

Problem

Existing

Solution

- Recurrent Neural Network based detecting technique
- Unified Architecture
- Separate Embedding Model
- Improvement in detecting unknown DGAs

Unified RNN Model Architecture

Dataset for RNN model

Benign Domains

- Alexa top million domains
- Cisco top million domains
- ~1.8 million unique domains
 - google.com
 youtube.com
 facebook.com
 baidu.com
 wikipedia.org
 yahoo.com

DGA Domains

- http://data.netlab.360.com/dga/#virut
- ~1.1 million unique domains
 - ydqtkptuwsa.org
 bnnkqwzmy.biz
 glrmwqh.net
 ibymtpyd.info
 bxyozfikd.ws
 nvjwoofansjbh.ru

Recurrent Neural Network

Recurrent Neural Network

I grew up in France ... I speak fluent ____?

RNN

LSTM

Layer

Output

Embeddi

ng Layer

Input

I grew up in France ... I speak fluent <u>French</u>?

Long Short-Term Memory

Unified RNN Model Architecture

Test Accuracy for known DGA types

Label	Record Count	Unified Model Accuracy	F score	
Benign	750153	0.9946	0.0974	
Malicious	415976	0.9845	0.9874	

Very high accuracy for detecting known DGA types

Detection Accuracy for unknown DGA types –

Label	Record Count	Unified Model Accuracy	Sample
chinad	1000	0.996000	qowhi81jvoid4j0m.biz 29cqdf6obnq462yv.com
ramnit	15080	0.718899	jrkaxdlkvhgsiyknhw.com mtsoexdphaqliva.com
shifu	2554	0.438919	urkaelt.info rsymdhk.info

Limitation

- Accuracy suffers for unknown DGA type
- Possible overfitting to training data
- Embedding representation is specific to the training data and is not representative of English language

Malware Life Cycle

Problem

Existing

Solution

RŇN

model

ment

- Domain Generation Algorithm
 - Traditional Approaches
 - Machine Learning Approaches
 - Recurrent Neural Network based detecting technique
 - Unified Architecture
- Separate Embedding Model
- Enhance Improvement in detecting unknown DGAs

Training Separate Character Embedding Model

- Learn embedding representation to capture the contextual information of the English language by training on articles from popular US newspapers
- Use this general representation to transform domain names
- The error is calculated based on the model's ability to predict the next character in the sequence

Learning Character Embedding

Separate Character Embedding based RNN Model Architecture

Test Accuracy for known DGA types

Label	Record Count	Unified Model Accuracy
Benign	750153	0.9946
Malicious	415976	0.9845

Test Accuracy for known DGA types

Label	Record Count	Unified Model Accuracy	Separate Embedding Model Accuracy	F Score Embedding Model	
Benign	750153	0.9946	0.9922	0.0975	
Malicious	415976	0.9845	0.9889	0.9875	

Detection Accuracy for unknown DGA types –

Label	Record Count	Unified Model Accuracy
chinad	1000	0.996000
ramnit	15080	0.718899
shifu	2554	0.438919

Detection Accuracy for unknown DGA types –

Label	Record Count	Unified Model Accuracy	Separate Embedding Model Accuracy	% Increase
chinad	1000	0.996000	0.998000	0.2
ramnit	15080	0.718899	0.768833	5.0
shifu	2554	0.438919	0.831245	39.23

Wrapping Up

- LSTM based RNNs are highly effective in detecting DGA
- Our proposed changes can improve detection accuracy for unknown DGA malware
- RNN based detection is proactive rather than reactive