HACKING YACHTS REMOTELY
IOT HACKING AT SEA

HITB2018DXB · Stephan Gerling · ©ROSEN-Group.com · 27-Nov-2018
Overview

• Introduction
• Maritime 1x1
• Router and SatCom vulnerabilities
• Autonomous Ships
• Q&A
Why hacking yachts?

Yachts mostly privately owned or chartered

CEO’s running their business from Yachts while traveling
Celebrities like showstars, actors & others

What, if I could control the Internet access of a yacht?
What, if I have remote access to the smart devices?
Stephan Gerling @ObiWan666

I am older than the internet
Certified as “GCFA, CISSP, MCSE, CCNA, etc.”
Electronic Specialist,
several years German Aviation Army navigation system electronic specialist
More than 31 years a volunteer firefighter in my town
Security Evangelist @ROSEN-Group in Oil & Gas Industrie
and CERTivation, latest ROSEN Group Spin Off
I void warranties

Volunteering
- Geraffel (group of „hacker nerds at ist best“)
- IamTheCavalry
Second tragic collision of U.S. warship with merchant vessel raises suspicion of nav system hacking on merchantmen. Are we already at war?
Accidents

Feb.2017 Containervessel 10h without access to Navigationsystem
Sep.2017 Norwegian: GPS Jamming from eastern direction

US Navy involved in 4 collisions in eastern pacific in 2017
• Februar USS Antietam in Bay of Tokios grounded
• Mai USS Lake Champlain: collision with trawler
• 17. Juni USS Fitzgerald: collision with freighter
• 21. August USS John S. McCain: collision with Tanker

Norwegian Frigate collided with a crude Oil vessel and aground & tilting
This happened Nov.2018 during major NATO military exercise
Vessels, Yachts and ships
Overview

A yacht is a recreational boat or ship.

The term originates from the Dutch word jacht, which means "hunt".

It was originally defined as a light fast sailing vessel used by the Dutch navy to pursue pirates and other transgressors around and into the shallow waters of the Low Countries.
Size matters

<table>
<thead>
<tr>
<th>Category</th>
<th>Size Range</th>
<th>Additional Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot</td>
<td>up to 7m (20ft.)</td>
<td>maybe GPS</td>
</tr>
<tr>
<td>Yacht</td>
<td>>= 10m (33 Fuß)</td>
<td>GPS, maybe Autopilot</td>
</tr>
<tr>
<td>Super Yacht</td>
<td>bigger than 24m (79 ft.)</td>
<td>GPS, GSM/Wifi Internet, smart TV, VoIP</td>
</tr>
<tr>
<td>mega yacht</td>
<td>any yacht over 50 meters (164 ft.)</td>
<td>GPS, GSM/Wifi Internet, smart TV, Autopilot, SatCom, smart Home, VoIP, ICS (propulsion) etc.</td>
</tr>
</tbody>
</table>
Superyacht

Indigo Star
Length 38,8m
Beam 7,7m
Swimming IoT

Modern vessels become swimming IoT devices

- Vessel Traffic Service (VTS)
- Automatic identification system (AIS)
- Autopilot
- GPS
- Radar
- Camera‘s, including Thermal imaging
- Engine control and monitoring (some now cloud based)
- Internet Access
- Entertainments systems
NMEA

NMEA 0183 (National Marine Electronics Association)

A combined electrical and data specification for communication between marine electronic devices, 4800 Baud speed

- echo sounder
- Sonars
- Anemometer
- Gyrocompass
- Autopilot
- GPS receivers
and many other types of instruments
NMEA

NMEA 2000
bandwidth capacities of less than 1Mbit/s
connects devices using Controller Area Network (CAN) technology originally developed for the auto industry.

NMEA 2000 network is not electrically compatible with an NMEA 0183 network
SeaTalkng

Note: Imagery for illustrative purposes only. Product images shown in suggested system diagrams are not to scale.

Typical Basic SeaTalkng System:

http://www.raymarine.de/uploadedFiles/Products/Networking/SeaTalk/SeaTalkng.pdf
Automatic identification system (AIS)

AIS is an automatic tracking system used
• on ships and
• by vessel traffic services (VTS).

Satellite-AIS (S-AIS)
• satellites are used to detect AIS signatures
Automatic identification system (AIS)

AIS information supplements marine radar,

- similar to GPS in Aircrafts –

which continues to be the primary method of collision avoidance for water transport.

AIS uses the GPS information from the internal NMEA network!
Electronic Chart Display and Information System (ECDIS)

ECDIS is a geographic information system used for nautical navigation displays information from:
- Electronic Navigational Charts (ENC)
- or Digital Nautical Charts (DNC)

integrates position information
- Position
- Heading
- speed

sensors which could interface with an ECDIS are radar, Navtex, Automatic Identification Systems (AIS), and depth sounders.
IT Equipment on Board

Internet Access
• GSM
• WiFi
• SAT (Inmarsat, VSAT, Iridium, etc.)

On Board
• Entertainment Systems
• WiFi (Crew, Guest/Owner)
• VoIP
IT equipment on Board

10 Smart TV & Sat Receiver
1 Chart PC
14 VoIP Telephones
1 Internet Router (GSM, WiFi, SAT)
1 rack mounted Switch (48ports)
1 UPS
4 WiFi Access Point
(Crew, Guest/Owner)
Smart Ships

Audio & Video Streaming
iPhone/iPad remote control of
• Lights
• Electric curtains
• Engine monitor
• Rudder
Etc.
Attack vectors

TCP/IP to NMEA 2000 Gateway
USB to NMEA 2000 Gateway
Engine
GPS
AIS
Radar
Sonar
Autopilot

Internet
TCP/IP Network
NMEA Network
SATCom
WLAN
GSM
Internet Router

Radar
Sonar
SATCom
WLAN
GSM
Internet
Router

TCP/IP to NMEA 2000 Gateway
USB to NMEA 2000 Gateway
Engine
GPS
AIS
Radar
Sonar
Autopilot

Internet
TCP/IP Network
NMEA Network
SATCom
WLAN
GSM
Internet Router

Radar
Sonar
SATCom
WLAN
GSM
Internet
Router
GNSS or GPS attacks
GPS – many different systems

GNSS (global Navigation satellite system)

- NAVSTAR GPS (United States of America)
- GLONASS (Russian Federation)
- Galileo (Europe Union)
- Beidou (China)
GPS – many different systems

- GPS
 - L5
 - L2
 - L5R
 - L3PT
 - L2PT

- GLONASS
 - multiplexing:
 - CDMA
 - TDMA
 - FDMA
 - E5a, E5b
 - E4
 - E3
 - E6

- Galileo
 - E5B(B2)
 - E6(B3)

- Compass
 - E5B

- SBAS
 - Omnistar
 - WAAS/EGNOS

Frequency (MHz):
- 1,170.450
- 1,178.200
- 1,187.000
- 1,186.000
- 1,185.000
- 1,184.000
- 1,183.000

- 1,328.200

- 1,547.500
- 1,575.420
- 1,602.100

Band:
- Band occupied
- Band reserved/planned

https://upload.wikimedia.org/wikipedia/commons/9/9a/Gnss_bandwidth.svg
GPS on the Bus

GPS – receiver sends the position onto the NMEA Bus

Services that rely onto this:
- ECDIS
- AIS
- Autopilot
- VTS
GPS

2 Scenarios are possible
- jamming
- spoofing

complexibility:
Jamming = quite simple

Spoofing
- requires special hardware
- spoof message over NMEA Gateway (TCP or USB)
GPS attacks

How to spoof GPS?

Specialized Hardware available for it.

For example Labsat GNSS Simulator
https://www.labsat.co.uk/index.php/de/produkte/labsat-3-de

Or use a BladeRF with GNSS Antenna and BladeGPS
https://github.com/osqzss/bladeGPS

But sometimes it's easier to fake the NMEA data of the GPS Sensor
Current Project

If physical access to NMEA network once is given

http://www.atlsoft.de/gps-simulator/
GPS - Jamming

Eastern Pacific reports more and more GPS anomalies

- Juni, week 25 – more than 20 reports – north east black see
- NATO Troops maneuver at same time there
- Sept. Norway reports anomalies in a height >2000ft

- US Navy teaching again offline Navigation with Sixtant
Automatic identification system (#1)

Following Data a AIS transceiver sends every 2 to 10 seconds while underway, and every 3 minutes while a vessel is at anchor:

- Maritime Mobile Service Identity (MMSI) – a unique nine digit identification number.
- Navigation status – "at anchor", "under way using engine(s)", "not under command", etc.
- Rate of turn – right or left, from 0 to 720 degrees per minute
- Speed over ground – 0.1-knot (0.19 km/h) resolution from 0 to 102 knots (189 km/h)
- Positional accuracy: Longitude & Latitude – to 0.0001 minutes
- Course over ground – relative to true north to 0.1°
- True heading – 0 to 359 degrees (for example from a gyro compass)
- True bearing at own position. 0 to 359 degrees
- UTC Seconds
AIS RF part

AIS uses the globally allocated Marine Band channels 87 & 88.

AIS uses the high side of the duplex from VHF radio "channels" (87B) & (88B)

• Channel A 161.975 MHz (87B)
• Channel B 162.025 MHz (88B)
• Before being transmitted, AIS messages must be NRZI encoded.
• AIS messages are GMSK modulated.
• transmission bit rate is 9600bit/s
AIS hacking

2-CHANNEL AIS RECEIVER WITH RTL-SDR AND GNUAIS

https://www.rtl-sdr.com/2-channel-ais-receiver-rtl-sdr-gnuais/
Yacht Router hacking

Locomarine
Yachtrouter
Yacht Router hacking

Locomarine Yachtrouter

• High power WIFI Booster for long distance connectivity (15+ NM)
• High power 4G/3G/2G module (30+ Nautical miles)
The control software (PC/Android/iOS)
The control software

- FTP connect to router
- Download “YachtRouterGen3.xml
- The APP changes settings in the XML
- Uploaded to the Router
The control software

- FTP is clear text
- Hardcoded credentials used !!!
- ...xml file contains WLAN SSID and Password (clear text)
Don’t use disassembler – u will get confused
code contains juicy informations
code contains juicy informations

```java
static yrEngine()
{
    yrEngine.RouterConfig_Username = "loco";
    yrEngine.RouterConfig_Password = "SecureConnectingUser";
    yrEngine.RouterConfig_FtpPath = "ftp://10.80.0.1/YachtRouterGen3.xml";
    yrEngine.RouterSupportInfo_FtpPath = "ftp://10.80.0.1/SupportInfo.png";
    yrEngine.extenderIdentity = "YR_WIFI_EXTENDER";
    yrEngine.rootExtenderDHCPServer = "dhcpBACKBONE";
    yrEngine.bridgePrefix = "bridgeEoip_";
    yrEngine.routingMarkPrefix = "markAlwaysON_";
    yrEngine.virtualApPrefix = "wifiAlwaysON_";
    yrEngine.eoipTunnelPrefix = "eoipTunnel_";
    yrEngine.shipPhysicalWifiInterface = "shipPhysical";
    yrEngine.defaultPassword = "12345678";
    yrEngine.rootIpAddress = "10.00.00.00";
}
```
Do we need a firewall?

NMAP scan on the public IP
- Router os= Mikrotik Router OS
- Winbox Management 8291/TCP
- API access of the Yachtrouter exe 8728/TCP (API)

- Portscan from Internet:
 - PORT STATE SERVICE
 - 21/tcp open ftp
 - 22/tcp open ssh
 - 53/tcp open domain
 - 2000/tcp open cisco-sccp
 - 8291/tcp open unknown
Remote support

• 9.1. Remote Support
 Each Yacht Router is equipped with Remote Support feature that gives our Technical Support ability to connect remotely over the Internet to your Yacht Router. You can use Remote Support in various situations like remote setup, diagnostics or Cloud Service activation.

To establish Remote Support please send an e-mail to support@locomarine.com with following details:
• Contact details (name, e-mail, phone number)
• Yacht Router model
• Yacht Router serial number
• Description of the problem
• Suggested best time (minimum one)
Remote support

Yacht Router model & serial number?

How do they know the IP address?
Remote support

Remember the Portscan?

Router os= Mikrotik Router OS
8291/tcp open unknown

Port 8291/TCP belongs to Winbox Management

Ok, lets Try with the passwords from the source
Issue #4 – WinBox Management
Issue #4 – Winbox Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Group</th>
<th>Allowed Address</th>
<th>Last Logged In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomarine User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yacht Router User</td>
<td></td>
<td></td>
<td>May/19/2016 15:28:54</td>
</tr>
</tbody>
</table>
Issue #4 – Winbox Management Cracking

MKBRUTUS v1.0.0

Password bruteforcer for MikroTik devices or boxes running RouterOS
Site: https://github.com/mkbrutusproject/MKBRUTUS

Or use CVE-2018-14847 (works on Mikrotik 6.42 or below)
https://github.com/BigNerd95/WinboxExploit

$ python3 WinboxExploit.py 192.168.0.1
 • User: the user
 • Pass: StrengGeheim
Vendor response

• Security issues reported in June 2017 to vendor
• 2 bugs intensely fixed
• New Apps and router firmware versions were developed
• In November finally released
• Permission from vendor to present
• CVE-2017-17673 requested

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17673
Testing of the patched Software

• Vendor asked me to test the patched software
• They send me a Test Router
• .Net application is now obfuscated
• SSH instead of FTP

But…. Security by obscurity – seriously ?
Testing of the patched Software

ICSharpCode.Decompiler.DecompilerException: Error decompiling System.String YR.Core.yrEngine/MyUserInfo::getPassword()

at ICSharpCode.Decompiler.IAST.IASTBuilder.StackAnalysis(MethodDefinition methodDef)
at ICSharpCode.Decompiler.IAST.IASTBuilder.Build(MethodDefinition methodDef, Boolean optimize, DecompilerContext context)
--- End of inner exception stack trace ---
at ICSharpCode.Decompiler.Ast.AstBuilder.AddTypeMembers(TypeDeclaration astType, TypeDefinition typeDef)
at ICSharpCode.Decompiler.Ast.AstBuilder.CreateType(TypeDefinition typeDef)
at ICSharpCode.Decompiler.Ast.AstBuilder.AddTypeMembers(TypeDeclaration astType, TypeDefinition typeDef)
at ICSharpCode.Decompiler.Ast.AstBuilder.CreateType(TypeDefinition typeDef)
at ICSharpCode.Decompiler.Ast.AstBuilder.AddType(TypeDefinition typeDef)
at ICSharpCode.ILSpy.CSharpLanguage.CompileType(TypeDefinition type, ITextOutput output, DecompilationOptions options)
at ICSharpCode.ILSpy.TextView.DecompilerTextView.DecompilerNodes(DecompilationContext context, ITextOutput textOutput)
at ICSharpCode.ILSpy.TextView.DecompilerTextView.<c__DisplayClass31_0.<DecompileAsync>b__0(}
Don’t forget the APP’s

```csharp
// YR.Core.YrEngine
using ...

public class YrEngine
{
    public class MyUserInfo : UserInfo, UIKeyboardInteractive
    {
        pub:
        pub:
        public string RouterConfig_Username = "loco";
        pub:
        pub:
        public string RouterConfig_Password = "ySyteMJwWuyAyMu84D";
    }

    public static string RouterConfig_FtpPath = "ftp://10.80.0.1/YachtRouterGen3.xml";
    public static string RouterSupportInfo_FtpPath = "ftp://10.80.0.1/SupportInfo.png";
    public static string extenderIdentity = "YR_WIFI_EXTENDER";
    public static string rootExtenderDHCPServer = "dhcpBACKBONE";
    public static string bridgePrefix = "bridgeEoip_";
}
public void PatchBackboneDataLeak()
{
    try
    {
        foreach (MK router in this._Routers)
        {
            if (!router.RouterID.Contains("MobileExpanderLB"))
            {
                if (router.RouterID.Contains("MobileExpander"))
                {
                    foreach (YachtRouterConfigWANMobile mobileWAN in this.mainConfig.MobileWANs)
                    {
                        if (mobileWAN.RouterID == router.RouterID)
                        {
                            router.RouteSetTargetToNewByComment(mobileWAN.InterfaceName, "backbone");
                            break;
                        }
                    }
                }
            }
            else
            {
                router.DeleteAllRoutes("0.0.0.0", "backbone");
                router.EnsureWorkingRoute("5.10.81.50", "backbone", "100");
                router.EnsureWorkingRoute("8.8.8.8", "backbone", "100");
                if (router.RouterID == "Main")
                {
                    router.AdjustDNS("10.80.0.3,10.80.0.2,8.8.8.8");
                }
                else
                {
                    router.AdjustDNS(string.Empty);
                }
            }
        }
    }
    catch (Exception ex)
    {
        this._curLogger.LogException(ex);
    }
}
Summery of the Patches

- Use of SSH instead of FTP
- Obfuscated Exe + DLL in Windows Version
- Android APK not obfuscated
- iOS Version not tested yest
- still Hardcoded credentials in yrEngine
- SSH and Winbox still reachable from Internet
Satcom
Satcom

- Offshore internet access via Satcom
- Patching?
- Many old versions still online
- A sample
Satcom

Shodan.io search hint’s for possible vulnerable devices

- “Sailor 900”
- “Inmarsat Solutions”
- “Telenor Satellite”
- “Commbox”
- org:"Intelsat GlobalConnex Solutions (GXS)"
- org:"Telenor UK Ltd"
Satcom

Did u know? Shodan.io has a Live Shiptracker

URL: Shiptracker.shodan.io

Tracks via VSAT connected Antennas and exposes Web Services
Satcom

Was shodan surfing for other Satcom Boxes!
“stabilized Digital Antenna System” result paid my attention

- Results in Cobham MXP Webserver
- Shodan Query for “Server: Micro Digital Webserver” gives better result
Search “Server: Micro Digital Webserver”
Cobham Seatel Satcom

• Was looking for Satcom devices via Shodan
• Found some online
• Analyzed Webinterface with Fiddler/burpsuite
• Found some juicy javascripts
SatCom

Above Decks

ICU

Antenna

Below Decks

Computer

MXP
/js/userLogin.js contains some hints

```javascript
if (t == "Dealer") {if (r == "true") {e = "MenuDealerGx.html"} else {e = "MenuDealer.html"}} else
if (t == "SysAdmin") {if (r == "true") {e = "MenuSysGx.html"} else {e = "MenuSys.html"}} else
if (t == "User") {if (r == "true") {e = "MenuEuNCGx.html"} else {e = "MenuEuNC.html"}}
```
Cobham Seatel Satcom RTFM

RTFM ! In the manual: default username and password

- Dealer
  - seatel3

- SysAdmin
  - seatel2

- User
  - seatel1
Cobham Seatel Satcom

CVE Lookup if someone found already:

F..K – someone was already faster

But....
Cobham Seatel Satcom

CVE-2018-5267 reported Auth bypass only in Version 121 Build 222701

I can confirm following other versions too:

- Version number: 186 (Build:225xxx)
- Version number: 179 (Build:224945)
- Version number: 171 (Build:224753)
- Version number: 148 (Build:223591)
- Version number: 147 (Build:223551)

Vulnerability fixed in version >200
Cobham Seatel Satcom

To have fun with the seatel device, following Menues are available without authentication:

ConfigPortGx.html - configuration der IO Ports
CommDiag.html - cli command interface
PositionAntGx.html - change Antenna configuration
FileAdmin.html
CfgFileDnUpload.html - down/upload config
FirmwareUpload.html - firmware update
CfgSysCommon.html - rename ship name in menu
SysStatus.html
RebootUnit.html - reboot
Cobham Seatel Satcom

What's the Risk now?

- Increase Cost
- Denial of Service
Engine Control units

ECU
Remote Panel
Safety Unit
Etc.

Mostly Connected to the Ethernet like a MTU wired remote control for engines and bow-thruster
The future: Autonomous ships
The future: Autonomous ships

- Manned Ship: Radar, ECDIS, Visual, On-Board
- Remote Ship: Radar, ECDIS, Visual, Via Satellite
- Automated Ship: Radar, ECDIS, Visual, Via Computer
- Autonomous Ship: Radar, ECDIS, Visual, Via Internet
Rolls-Royce Showcases World’s 1st Remotely Operated Commercial Ship

One of Svitzer’s tugs, the 28-meter-long Svitzer Hermod, safely conducted a number of remotely controlled maneuvers. From the quay side in Copenhagen harbor, the vessel’s captain, stationed at the vessel’s remote base at Svitzer headquarters, berthed the vessel alongside the quay, undocked, turned 360°, and piloted it back, docking again.

Key facts:
- Rolls-Royce and Svitzer demonstrate the world's first remote controlled commercial vessel.
- Test took place in Copenhagen harbour.
- The 28 metre Svitzer Hermod was controlled by a Captain from shore.
- It successfully demonstrated vessel navigation, situational awareness, remote control and communications systems.
- Rolls-Royce Remote Operations Centre features state-of-the-art control.
- Combination of Radar, Lidar and camera technology ensures Captain's awareness of surroundings.

The tech:
- On board sensors to give Captain full awareness of surroundings.
- Sensors covering Radar, Lidar, camera and audio.
- State-of-the-art Remote Operations Centre on shore.
- Rolls-Royce Dynamic Positioning systems control position of the vessel via satellite.

The test:
- 400+ individual validations met.
- 42 individual safety requirements met.
- Passed 61 mandatory cyber security tests.
- Completed 16 hours of remote control operation and overseen by Lloyd’s Register.

The vessel:
- 28 metre tug Svitzer Hermod.
- Built in 2016.
- 2 x MTU 16V4000 M63 diesel engines.
What’s next?

- NMEA protocol needs more test
- Wireless Autopilot
- Other Internet Equipment tested by others
- Vessel hacking is just in the beginning
- Closer look onto Cloud services

- Release of CVE-2018-16114 and PoC code when fixed
Future is cloud
conclusion

• NMEA Gateways needs more research
• SATCom Boxes mostly unpatched (or only once a year)
• VTS is unexplored
• Autopilot Remote control (currently working on)
• Injecting NMEA messages to the Bus (currently working on)
• GPS spoofing protection (DLR “Galant” new Antenna array)
Special thank to

- you, for attending my talk
- HITB2018DXB for this great event again
- “I am The cavalry”
- Brian Satira @r3doubt and Brian Olson @akordingtobrian
great talk @derbycon “Ship Hacking: a Primer for Today’s Pirate”
- Ken Munro from Pentest Partners
- My employee ROSEN for supporting me
- My Security friends (family) around the world
May the force be with u

Twitter: @ObiWan666

SGerling@ROSEN-Group.com
THANK YOU FOR JOINING THIS PRESENTATION.