
Hunting for Backdoors in IoT Firmware
at Unprecedented Scale

HITBSecConf Dubai
November 27, 2018

John Toterhi
john@finitestate.io
@cetfor

Journey to Backdoor Discovery via Firmware Analysis

2

1. The Scale of Data & Duplication

2. Backdoor Manifestations

3. The Power of Correlation

4. Source Code Analyzers

5. Binary Analyzers

1. The Scale of Data & Duplication

The Scale of D&D: Backdoors to Date

4

This effort lead to:

● Discovery of 4 verified IoT backdoors (75 unique devices)

● Discovery of 11 unverified IoT backdoors (107 unique devices)

● Backdoors exist in approximately 0.9 - 2.1% of analyzed IoT devices

Results based on a 3-month R&D effort between Sept - Nov 2018 on 8,758 unique IoT products

The Scale of D&D: Firmware Collection

5

Firmware scrapers for 76 vendors

224,778 images 157,010 unique

Research archiveRaw Images ~30% Duplication

File analysis,
Metadata

34,921,669
extracted files
(incl. duplicates)

Currently indexing 8,758 unique products

The Scale of D&D: File Duplication Metrics

6

157,010 unique
firmware images

across 76 vendors

34,921,669
successful file
extractions (incl.
duplicates)

Select files types with attack surface significance
Executables: 1,474,686 (159,432 unique, 89.2% duplication)
Shared libs: 1,325,862 (144,721 unique, 89.1% duplication)
Python: 1,281,338 (8,635 unique, 99.3% duplication)
Shell scripts: 518,203 (13,800 unique, 97.3% duplication)
JavaScript: 261,394 (34,334 unique, 86.9% duplication)
Java applets: 188,340 (51,983 unique, 72.4% duplication)
PHP: 54,268 (8,159 unique, 85.0% duplication)

91.7% duplication
in these security-
significant files

dd-wrt accounts for 5% of our total file count

The Scale of D&D: File Duplication Metrics

7

The other ~30 million files

● Text files (license info, etc.)

● Kernel objects (.ko)

● Random scripts (lua, perl, etc.)

● Symlinks

● Web content (html, asp, etc)

● Audio files

● Binary blobs

● Certificates, Key files

● Configuration files

● Images (jpg, png, etc)

Several of these “other files” are of security interest that deserve consideration and further analysis

2. Backdoor Manifestations

IoT Backdoor Manifestations: Juniper ScreenOS

9
HD Moore; Fox-IT; NCC Group; https://blog.rapid7.com/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor/

CVE-2015-7755

● Telnet & SSH backdoor credentials in Juniper NetScreen firewall (ScreenOS)
● Password was “<<< %s(un=’%s’) = %u”, similar to surrounding strings
● Usable without a valid username

1/6

IoT Backdoor Manifestations: DBLTek GoIP

10
Neil Kettle; https://www.trustwave.com/Resources/SpiderLabs-Blog/Undocumented-Backdoor-Account-in-DBLTek-GoIP/

md5(challenge + 20139 + (challenge >> 3))[0:6]

● `login` binary contains a challenge/response for the “dbladm” user (telnet)
● The user can compute the password based only on the challenge

No known CVE2/6

IoT Backdoor Manifestations: Belkin F9K1102

11
Wadeek; https://dl.packetstormsecurity.net/1801-exploits/belkinn600db-ssrfexecbackdoor.txt

● `dev.htm` file contains a debugging webshell
● Requests to the backend via /dev.cgi?c=<cmd> gives root access

dev.htm interface

`nvram` from root shell

No known CVE3/6

IoT Backdoor Manifestations: WD My Cloud

12Remco Vermeulen; https://www.securify.nl/advisory/SFY20180102/authentication-bypass-vulnerability-in-western-digital-my
-cloud-allows-escalation-to-admin-privileges.html - @Exploiteers: https://twitter.com/Exploiteers/status/1042093284666040325

Triggering payload

● `network_mgr.cgi` (ARM binary) manages user sessions
● POST req. with cmd=cgi_get_ipv6, flag=1 creates session tied to user IP
● Subsequent requests with Cookie data username=admin bypasses auth.

CVE-2018-171534/6

IoT Backdoor Manifestations: Dahua IP Camera

13

Binary Ninja MLIL view

● Backdoored telnetd in `busybox` (ARM) embedded linux “Swiss Army knife”
● Username: admin, Password begins with 7ujMko0

No known CVE

One of the many credentials used by the Mirai botnet

5/6

IoT Backdoor Manifestations: EnGenius EAP*

14
Robert Quattlebaum; https://gist.github.com/darconeous/b24cdaa853a8f35162f2f8e3a3050149

● Issue in `login.sh` tied to telnet connections via init scripts
● Logins are jailed in a restricted shell; undoc. command breaks out of the jail

○ Command: “1d68d24ea0d9bb6e00000000000000000”

No known CVE6/6

3. The Power of Correlation

The Power of Correlation

16

● Cryptographic hashing enables deduplication
● Fuzzy hashing enables correlation

○ ssdeep was designed to correlate corrupted image and video files
● For binary and source correlation, we use MRSH-CF

○ Based on many years of AMA evolution; ssdeep, sdhash, mrsh-v2

Jesse Kornblum, ManTech; “Identifying Almost Identical Files Using Context Triggered Piecewise Hashing”, DFRWS 2006
Vikas Gupta, Frank Breitinger; “How Cuckoo Filter Can Improve Existing Approximate Matching Techniques”, ICDF2C 2015

The Power of Correlation

17

File 1 File 2 SSDeep MRSH-CF

busybox (v1.18.4, mipsel) busybox (v1.18.4, mipsel) 100% 100%

busybox (v1.18.4, mipsel) busybox (v1.19.0, mipsel) 0% 7.5%

login.sh (EnGenius) login.sh (WatchGuard) 96% 79.8%

asus_lighttpd (arm, 4G-AC55U) asus_lighttpd (arm, RT-AC1900U) 0% 10%

lighttpd (mips, Ubiquiti nbm365) libusb.so.4 (mips, Ubiquiti es-8xp) 0% 0%

wireless.so (RouterOS, mips) wireless.so (RouterOS, arm) 0% 2.6%

This is a random sampling for correlation and does not not imply backdoors or other vulnerabilities exist in these files

1

2

3

4

5

6

The Power of Correlation: Telnet Jailbreak

18

The Power of Correlation: Telnet Jailbreak

19

● Telnet jailbreak, publicly identified in 6 devices (5 EnGenius, 1 Araknis)
● Found in 42 other devices from EnGenius

The Power of Correlation: Telnet Jailbreak

20

● Telnet jailbreak, publicly identified in 6 devices (5 EnGenius, 1 Araknis)
● Found in 42 other devices from EnGenius, WatchGuard

The Power of Correlation: Telnet Jailbreak

21

● Telnet jailbreak, publicly identified in 6 devices (5 EnGenius, 1 Araknis)
● Found in 42 other devices from EnGenius, WatchGuard and TRENDNet

The Power of Correlation: Webshell

22

dev.htm interface

`nvram` from root shell

The Power of Correlation: Webshell

23

● Belkin Webshell, publicly identified in 1 device from Belkin
● Found in 28 other devices from Belkin

Ability to access webshell depends on device configuration; presence of webshell alone is not enough to determine exploitability

The Power of Correlation: Webshell

24

● Belkin Webshell, publicly identified in 1 device from Belkin
● Found in 28 other devices from Belkin, Ubiquiti

Ability to access webshell depends on device configuration; presence of webshell alone is not enough to determine exploitability

The Power of Correlation: Webshell

25

● Belkin Webshell, publicly identified in 1 device from Belkin
● Found in 28 other devices from Belkin, Ubiquiti, TP-Link

Ability to access webshell depends on device configuration; presence of webshell alone is not enough to determine exploitability

The Power of Correlation: Webshell

26

● Belkin Webshell, publicly identified in 1 device from Belkin
● Found in 28 other devices from Belkin, Ubiquiti, TP-Link and TRENDnet

Ability to access webshell depends on device configuration; presence of webshell alone is not enough to determine exploitability

The Power of Correlation: LibSSH Auth Bypass

27
Peter Winter-Smith; NCC Group; https://www.nccgroup.trust/uk/our-research/technical-advisory-authentication-bypass-in-libssh/

● CVE-2018-10933: Authentication Bypass in libSSH
● Client sends SSH2_MSG_USERAUTH_SUCCESS instead of

SSH2_MSG_USERAUTH_REQUEST, an attacker could successfully
authenticate without credentials

The Power of Correlation: LibSSH Auth Bypass

28

Vulnerable versions found in 5 devices from Belkin, TP-Link, WatchGuard *

* Existence of the vulnerable library does not imply these systems are vulnerable in their configurations

The Power of Correlation: LibSSH Auth Bypass

29
Vulnerable server-side handler; important elements at index 16,17 which modify the session object

4. Source Code Analyzers

Source Code Analyzers: About Complexity

31

Source files account for a large portion of attack surface on many devices
○ Pattern matching and regular expressions cannot find most issues
○ There are more advanced methods for analyzing source code

Most languages are at least
context-sensitive, but we aim to
simplify them to grammars that
are context-free

regular

context-free

context-sensitive

recursively enumerable

Chomsky hierarchy

Source Code Analyzers: Why regex won’t work

32

Source Code Analyzers: Why regex won’t work

33

y4 = Φ(y1, y2, y3) = Φ(null, ”more”, “less”)

Source Code Analyzers: Lexing

34

Lexing is the process of breaking an inputstream into discrete components
(lexemes) and applying defining characteristics to them

type: VariableDeclaration
start: 0
end: 22

kind: “const”

type: Identifier
start: 6
end: 11

name: “fruit”

type: Literal
start: 14
end: 21

value: “apple”
raw: “\“apple\””

const fruit = “apple”;

Source Code Analyzers: Parsing

35

Parsing is the process of applying structure to an input token stream in the
form of a parse tree or “concrete syntax tree”

const fruit = “apple”;
VariableDeclaration

Program

VariableDeclarator

fruit

identifier literal

appleconst

Source Code Analyzers: Before we can begin

36

SOURCE
CODE LEXER

Token 1

Token 2

Token N

PARSER

GENERATE
AST

CONTEXT-FREE
GRAMMAR

(EBNF)

ANTLR
(Java)

1. 2.

3.

4. 5.
6.

9.

7.

CUSTOM
ANALYSIS
TOOLING

10.

PARSE TREE
CST

8.

Step 10 is where we can start doing useful analysis

● Parse Tree -> AST -> UAST
● Key / Pattern Matching
● Scope evaluation / management
● Global symbol table evaluation

● Source & Sink Analysis
● Taint Analysis
● Symbolic Execution
● Constraint Solving

Source Code Analyzers: Getting to work

37

CUSTOM
ANALYSIS
TOOLING

10.

SCOPE TREE SYMBOL
TABLE

SOURCE /
SINK /

SANITIZE
ANALYZERS

PATTERN
ANALYZERS

11. 12.

14.15.

DATA FLOW
ANALYZER

13.

Step 10 is where we can start doing useful analysis

● Parse Tree -> AST -> UAST
● Key / Pattern Matching
● Scope evaluation / management
● Global symbol table evaluation

● Source & Sink Analysis
● Taint Analysis
● Symbolic Execution
● Constraint Solving

Source Code Analyzers: Demo 1

38

Shell script analysis

EnGenius restricted shell (`login.sh`, 363 lines of code)

Source Code Analyzers: Demo 1

39

Shell script analysis

EnGenius restricted shell (`login.sh`, 363 lines of code)

5. Binary Analyzers

Binary Analyzers
● Binary files account for most of the heavy lifting in IoT devices
● Architecture considerations in analysis: ARM, MIPS, PowerPC, x86, etc.

○ Multi-architecture handled through an intermediate language

41

JSON

Input Binary
(ELF/RAW)

Disassembly w/
Linear Sweep

Lift to
MLIL
SSA

Analysis
via

Python API

JSON
Results

Binary Analyzers
● Zero extra effort due to Binary Ninja’s IL, one additional step to disassembly
● Supports all common IoT architectures, with support to add new processors

42

ARM MIPS PPC Generalized MLIL

str fp, [sp, #-4]!
add fp, sp, #0
sub sp, sp, #12
str r0, [fp, #-8]
ldr r3, [fp, #-8]
ldr r2, [fp, #-8]
mul r3, r2, r3
mov r0, r3
sub sp, fp, #0
ldr fp, [sp], #4
bx lr

addiu $sp,$sp,-8
sw $fp,4($sp)
move $fp,$sp
sw $4,8($fp)
lw $3,8($fp)
lw $2,8($fp)
nop
mult $3,$2
mflo $2
move $sp,$fp
lw $fp,4($sp)
addiu $sp,$sp,8
j $31
nop

stwu 1,-32(1)
stw 31,28(1)
mr 31,1
stw 3,8(31)
lwz 10,8(31)
lwz 9,8(31)
mullw 9,10,9
mr 3,9
addi 11,31,32
lwz 31,-4(11)
mr 1,11
blr

int32_t var_c = arg1
uint32_t reg2 = zx.d(arg1)
uint32_t reg2_1 = zx.d(reg2 * var_c)
uint32_t reg1 = zx.d(reg2_1)
return reg1

int square (int num) { return num * num; } // “Compiler Explorer” godbolt.org

Binary Analyzers: Process

43

Binary Files Binary Ninja

● Imports / Exports
● Functions
● Cross references
● Global & local variables
● Type guessing
● Basic stack resolution

MLIL SSA Custom Analyzers

● Stack analysis
● Heap alloc/dealloc tracking
● Data flow analysis
● Commonly misused funcs.
● CWE checking

Binary Analyzers: Demo 1

44

ARM ELF, abnormal string comparisons & frequency analysis

● BusyBox analysis

Binary Analyzers

45

ARM ELF, abnormal string comparisons & frequency analysis

● Freq. analysis of 9,574 unique versions of busybox

● Sampling of strings referenced in strcmp and strncmp:

7614: 'default'
4151: '--help'
3897: 'inet'
3357: 'rootfs'
2939: '255.255.255.255'
2683: 'gz'
2667: 'auto'
2049: '-net'
2049: '-host'
1980: 'login'

10: 'http://'
10: 'b'
9: 'PROCESS_ACCOUNTING'
9: 'opts='
9: '7ujMko0'
9: 'username='
9: 'confold'
9: 'TERM=linux'
9: 'pw'
9: 'endcmd'

2: 'mfgroot'
2: '.deb'
2: 'lst'
2: '%TGBnhy6m'
2: 'noarp'
2: 'forever'
2: 'qaZ*IK<9ol.'
2: 'boundary='
2: 'show'
2: 'y'

741 unique strings found in strcmp and strncmp functions across all busybox samples

Binary Analyzers

46

ARM ELF, abnormal string comparisons & frequency analysis

● Freq. analysis of 9,574 unique versions of busybox

● Sampling of strings referenced in strcmp and strncmp:

7614: 'default'
4151: '--help'
3897: 'inet'
3357: 'rootfs'
2939: '255.255.255.255'
2683: 'gz'
2667: 'auto'
2049: '-net'
2049: '-host'
1980: 'login'

10: 'http://'
10: 'b'
9: 'PROCESS_ACCOUNTING'
9: 'opts='
9: '7ujMko0'
9: 'username='
9: 'confold'
9: 'TERM=linux'
9: 'pw'
9: 'endcmd'

2: 'mfgroot'
2: '.deb'
2: 'lst'
2: '%TGBnhy6m'
2: 'noarp'
2: 'forever'
2: 'qaZ*IK<9ol.'
2: 'boundary='
2: 'show'
2: 'y'

741 unique strings found in strcmp and strncmp functions across all busybox samples

Binary Analyzers: Demo 2

47

ARM ELF, buffer overflow checking
● Asus “Download Master” feature in `asus_lighttpd`
● Example of bug with no provable state (i.e. not a vulnerability)

The presence of a bug means nothing without a provable state. Risk should never be implied.

<meta HTTP-EQUIV="REFRESH" content="0;url='http://www.example.com/'" />

Research Summary

Research Summary

49

● Discovery of 4 verified IoT backdoors (75 unique devices)

○ Modified busybox, custom httpd, CGI handlers

● Discovery of 11 unverified IoT backdoors (107 unique devices)

○ Number one source is custom httpd implementations

● Automated verification is no where near a solved problem

○ Unknown configurations, emulation challenges, dead code

We are currently working to disclose these issues to affected manufacturers

Questions?

Feel free to contact me with any questions you think of later
john@finitestate.io

@cetfor

