
IPv666
Address of the Beast

Chris Grayson
@_lavalamp

Marc Newlin
@marcnewlin

HO (OH)
H TO THE OH VEE

MY NAME IS

IT’S THE FUTURE BAYBEEEEEE

The Future is a Scary Place...

● IPv6 is growing increasingly prevalent

● It’s great from a number of angles

● As far as security is concerned, IPv6 fails
open in some interesting ways

● We’re p sure there are organizations out
there with their whole corporate network on
the open Internet

...and IPv6 is No Exception

● Started learning about IPv6 security

● Things seemed like they might be bad

● Went to validate some hypotheses…

● Turns out IPv6 address discovery is a hard
problem

Where to From Here Cap’n?
● Background

● IPv6 Security Implications

● The Scanning Problem

● Honeypotting for PSLAAC

● Modeling for non-PSLAAC

● IPv666

● Conclusion

A Bit o’ Background

What is IPv6?

● ...it’s the future

● We ran out of IPv4 addresses (hence
NAT, 10.*, 192.168.*, 172.16.*)

● IPv4 == 32-bit addresses, IPv6 ==
128-bit addresses (3.4028237e+38)

● Lots of engineering improvements

How Common is IPv6?

IPv6 is a Great Engineering Feat!

● Better routing

● More efficient packet processing

● Multicast is the new broadcast

● Automatic configuration

● IT JUST WORKS!!

A Tale of Gateways and Set Top Boxes

● DEFCON 25

● 26 CVEs

● All in consumer premise equipment (CPE)

● Ie: gateways and set top boxes

● IPv6 was a big part

● https://github.com/BastilleResearch/CableTap

https://github.com/BastilleResearch/CableTap

Send-to-TV / Remote Web UI

● Gateway web UI accepts remote
requests from ISP infrastructure

● IPv6 address of target gateway
provides remote web UI access via
set-top box

Remote Web Inspector
Comparable to FireFox and Chrome DevTools, accessible from over the internet

IPv6 Security Implications

No More NAT (Kinda)

● RFC 2663 - Network Address Translation

● Allocated 10.*, 192.168.*, 172.16.* for
private, repeated usage

● Intended to help with address space
exhaustion

● Ended up being a slammin’ security
control

Iptables? More Like Ip6tables!

● If you take a look at iptables -L and you see
all input is rejected, you’re good right??

● Maybe you didn’t hear about ip6tables

● Iptables rules do not apply to IPv6, and lots
of people don’t know this

● Configure your firewalls separately

SLAAC
● Originally, statically configure your IP addresses

● Then comes DHCP servers to automatically allocate
IP addresses

● Need to have a DHCP server for most networks

● Nah bruh - check out Stateless Address
Autoconfiguration (SLAAC)

● ...and PSLAAC

IPv6 is the Preferred Communications Protocol

● All modern operating systems prefer to
talk over IPv6

● All modern networking equipment
supports IPv6 by default

● If your machine can talk to a remote
host over IPv6, it will do so over IPv6 in
most cases

Many-to-one Addresses to Interfaces

● Ever configured a server to listen on an interface?

● You might be listening for more than you bargained for

We Need ICMPv6
● In IPv4 address resolution protocol (ARP) is used

to tie layer two addresses (MAC) to layer three
addresses (IP)

● This is required for routing traffic - without it no
talky

● Built into ICMPv6 is Neighbor Discovery Protocol

● Ergo blocking or disabling ICMP entirely means
your networks don’t work

Multicast is the New Broadcast

● Broadcasting is cool, but in many cases it’s
wasteful

● What if you could specify a distance for
propagation and the type of devices to receive
the data?

● You’re talkin’ about multicast brothaaaa

In Summary
● IPv6 works out of the box without any configuration

● All your devices and networking equipment prefers it

● There’s no such thing as private address space (for the most part)

● Your existing firewall rules don’t apply

● You can’t easily prevent ping scans

● Single packets can be relayed to lots and lots of hosts

Let’s Go Hunting

The Problem of Scale
● IPv4

32 bit addresses
2^32 possible addresses

4,294,967,296 addresses

● IPv6
128 bit
2^128 possible addresses

340,282,366,920,938,463,463,374,607,431,768,211,456 addresses

PSLAAC Makes Things Harder
● Addresses have host and network bits

● Network is site prefix and subnet ID

● Host is interface ID

● PSLAAC means interface ID is
pseudorandom

● Even “small” networks (/96) have 32
bits of randomness

Breaking Down the Problem

● Modeling for cryptographic entropy is no
bueno

● Two independent problems instead

○ Identifying PSLAAC hosts
○ Identifying non-PSLAAC hosts

Honeypotting for PSLAAC

Why Honeypotting?

● Search space too massive

● Instead of finding them, have them find us

● Took multiple approaches

○ DNS Server
○ SMTP Server
○ Web Server

● Popads!

Honey DNS Server
● Set up Bind server

● Glue records point to IPv6

● Zones delegated to IPv4 then IPv6

● Post links all over social media

● Popads!

A Quick Note on PopAds

Honey Web Server
● Set up best site ever at

http://ipv6.exposed/

● Available over IPv6, some other
shenanigans for forcing IPv6

● WebRTC for IP address enumeration

● Post all over social media

● Popads!

http://ipv6.exposed/

Honey Web Server (cont’d)

Honey SMTP Server

● Set up SMTP server

● Have our DNS honeypot point to it

● Sign up for ALL THE THINGS

● Use MailBait to sign up for spam

● Mega womp womp

Sweet(?) Honey Results

● 92,609 unique IP addresses over ~10 months

● Cost $500+

● Lost focus, but still suboptimal

Modeling for Non-PSLAAC

Structure in IPv6 Addresses
2001:1284:f01c:2c0a:8238:bcff:fed3:4e03
2001:1498:1::32:48
2001:16b8:101:3175:a96:d7ff:fe7e:c4aa
2001:16b8:6100:0:3631:c4ff:fe14:3d72
2001:1890:1f8:46::1:6
2001:1bc8:1004::2:0:99
2001:260:450:7b::4
2001:41d0:2:275b::182
2001:41d0:2:3d77::
2001:4998:44:6027::2005
2001:4b78:2::f06b
2001:558:370:ba::1
2001:579:6f03:600:c0b3:b230:5c3:df35
2001:610:1a0:30::2
2001:638:708:30da:ea11:32ff:fe70:8ae6
2001:8d8:921:c500::70:18e1
2001:980:6972::1
2001:bc8:2800:36dd:87f9:1ef0:8a7a:c21f
2001:e42:102:1819:160:16:234:111
2001:ee0:4041:37a5:8acf:98ff:fee7:fec
2001:ee0:4140::1230:2502:7004
2001:ee0:4501:5062:1894:5a03:9cc3:216f
2001:ee0:5500:8b5a:585d:c41a:7a09:f73a
2003:0:2e02:1050::1
2003:5a:4049::1
2400:6180:100:d0::34:8001

2400:8500:1302:803:133:130:127:180
2400:b800:1:1::18
2400:cb00:2048:1::6810:7166
2400:cb00:2048:1::6818:d3a
2404:6800:4007:801::2003
2406:da00:ff00::1715:7892
2406:e00:120:391c:0:30:ab4:4f40
2407:500::2:5a9:b7bf
2600:0:2:1239:144:232:2:85
2600:3c00::f03c:91ff:feae:ee1c
2600:3c00::f03c:91ff:fedf:426
2600:3c03::f03c:91ff:fe79:e1a4
2600:3c03::f03c:91ff:fea1:4761
2600:3c03::f03c:91ff:fea2:42c7
2603:3006:103c:b000::17f6
2604:2d80:4030:0:91c2:c016:2329:7219
2605:de00:1:1:4a:32:0:23
2606:b400:8808:f000::a022:fa6d
2620:11:0:c2b4:749a:46bf:291:38cf
2620:8d:0:7f47::d827:7f47
2800:370:2:418a:b8d3:ddc8:13a8:8768
2800:370:2:972d:dd4a:a203:9d92:3353
2800:370:44:256d:5950:afb3:7627:10f4
2800:370:55:3c60:404a:d212:49dd:4477
2800:370:55:b9c6:70b1:9c61:69e:2b02
2800:370:61:11dc:e57f:1804:a456:eddc

2800:370:84:0:d0bd:6968:d1ae:d26f
2800:370:84:bba1:857c:f02d:cd6c:cd51
2800:370:a:ae43:79b9:348b:3c0:8c7b
2800:4f0:1:ecd5:dd66:8006:1203:be04
2800:4f0:62:850c:92d:85a1:3431:a7b8
2803:c300::2
2804:14d:1a87:0:7815:7414:e01:dd02
2804:14d:8e8c:1000:b42f:9577:7fbb:778b
2804:292c:1::5
2804:a8:2:c8::12a
2806:102e:9:5055:272:63ff:fe83:e620
2806:108e:c:2e3:7279:90ff:fe9c:2a07
2a00:d0c0:200:0:b9:1a:9c36:20c
2a01:488:42:1000:50ed:8479:33:339a
2a01:488:42:1000:50ed:84f5:1c:ff1f
2a01:5a60:3::92
2a01:7c8:d002:1c::1
2a01:a8:dc0:330:1::1c5d
2a02:2028:80c:e900::1
2a02:26f0:df:202:e3cc:80db:ebaa:3e93
2a02:6b8:0:161b:ec4:7aff:fe18:c48
2a02:6b8:b000:63a:96de:80ff:fe81:1258
2a02:6b8:b000:6509:215:b2ff:fea9:66fa
2a02:8108:0:12:587b:b48e:e629:436b
2a02:8108:8000:21:2864:5009:d4d2:36f0
2a02:810d:8000:29:e8b0:6937:7ddd:e597

MACHINE LEARNING BAYBEEEE

● Model is a compact representation of
data set

● Projection through model creates new
data set with error %

● Errors are representative of structure in
IPv6 addresses

● Hopefully find new addresses

lol jk

● All attempts resulted in
over-fitting

● Projected addresses were the
same as our input addresses

● We’re not ML experts sooooo….

The Entropy/IP Paper
● http://www.entropy-ip.com/

● Really interesting paper from Akamai

● Maps entropy of different segments of IPv6
addresses

● Big takeaways:

○ Not THAT much entropy in non-PSLAAC IPs
○ Simpler modeling might work better

http://www.entropy-ip.com/

Dumbing Things Down (Modeling)

2800:4f0:80:f662:880b:6c2f:cf59:662b

0x2, 0x8, 0x0, 0x0, 0x0, 0x4, 0xf, 0x0, 0x0, 0x0, 0x8, 0x0, 0xf, 0x6, ...

Break down into 32 nybbles

counts[0][0x2][0x8]++

Count occurences by position and nybble

counts[1][0x8][0x0]++

counts[2][0x0][0x0]++

counts[3][0x0][0x0]++

counts[4][0x0][0x4]++

counts[5][0x4][0xf]++

counts[6][0xf][0x0]++

...

Dumbing Things Down (Prediction)

0x2
Position 0

probabilities[0][0x2]

p(0x0) => 0.05
p(0x1) => 0.05
p(0x2) => 0.01
p(0x3) => 0.09
p(0x4) => 0.00
p(0x5) => 0.15
p(0x6) => 0.05
p(0x7) => 0.09
p(0x8) => 0.00
p(0x9) => 0.06
p(0xa) => 0.15
p(0xb) => 0.09
p(0xc) => 0.06
p(0xd) => 0.10
p(0xe) => 0.03
p(0xf) => 0.02

0xa
Position 1

Looks Promising… TOO PROMISING

● Generated 10mm addresses

● After scanning, over 50k responded
to ICMP probes

● WOW WE TOTES SOLVED THE
PROBLEM!!! ZOMG CELEBRATION
TIME!!!!

Enter Aliased (ie: Jerk) Networks

● Network ranges where every IP address
responds to ICMP pings

● Why?? Because they’re jerks

● Not great for scanning

● Even worse for statistical modeling

Identifying Aliased Networks (Initial)
2800:4f0:80:f662:880b:6c2f:cf59:662b

Wrap in /96 network

2800:4f0:80:f662:880b:6c2f:cf59:662b/96

Generate eight addresses in network

2800:4f0:80:f662:880b:6c2f:fed3:4e03
2800:4f0:80:f662:880b:6c2f:eb83:9376
2800:4f0:80:f662:880b:6c2f:8924:f2f6
2800:4f0:80:f662:880b:6c2f:7949:7d8e

2800:4f0:80:f662:880b:6c2f:5676:f7bb
2800:4f0:80:f662:880b:6c2f:a286:ad59
2800:4f0:80:f662:880b:6c2f:bb7d:6d0a
2800:4f0:80:f662:880b:6c2f:8e3e:4fd4

ICMP scan

If 50% of addresses respond, net is aliased

2800:4f0:80:f662:880b:6c2f:cf59:662b/96

Identifying Aliased Networks (Network Size)

2800:4f0:80:f662:880b:6c2f:cf59:662b

Map to bits

0010100000000000:0000010011110000:0000000010000000:1111011001100010:1000100000001011:0110110000101111:1100111101011001:0110011000101011

AliasedUnknown

Flip right half of unknown bits

0010100000000000:0000010011110000:0000000010000000:0000100110011101:0111011111110100:1001001111010000:1100111101011001:0110011000101011

ICMP scan

...

Identifying Aliased Networks (Network Size cont’d)

ICMP scan

Flipped bits are aliased,
left bits are unknown

Response receivedNo response received

Left bits are not aliased,
flipped bits are unknown

Rinse and repeat

0010100000000000:0000010011110000:0000000010000000:1111011001100010:1000100000001011:0110110000101111:1100111101011001:0110011000101011

AliasedUnknownNot Aliased

0010100000000000:0000010011110000:0000000010000000:1111011001100010:1000100000001011:0110110000101111:1100111101011001:0110011000101011

AliasedUnknown

IPv666

Was Ist Das?

The Scanning Loop

666scan
Usage of ./build/666scan:

 -config string

 Local file path to the configuration file to use. (default "config.json")

 -force

 Whether or not to force accept all prompts (useful for daemonized scanning).

 -input string

 An input file containing IPv6 addresses to initiate scanning from.

 -input-type string

 The type of file pointed to by the 'input' argument (bin or txt). (default "txt")

 -network string

 The target IPv6 network range to scan in. If empty, defaults to 2000::/4

 -output string

 The path to the file where discovered addresses should be written.

 -output-type string

 The type of output to write to the output file (txt or bin). (default "txt")

666alias
Usage of ./build/666alias:

 -config string

 Local file path to the configuration file to use. (default "config.json")

 -net string

 An IPv6 CIDR range to test as an aliased network.

666blgen
Usage of ./build/666blgen:

 -config string

 Local file path to the configuration file to use. (default "config.json")

 -input string

 An input file containing IPv6 network ranges to build a blacklist from.

666clean
Usage of ./build/666clean:

 -blacklist string

 The local file path to the blacklist to use. If not specified, defaults to the most recent blacklist in

the configured blacklist directory.

 -config string

 Local file path to the configuration file to use. (default "config.json")

 -input string

 An input file containing IPv6 addresses to clean via a blacklist.

 -out string

 The file path where the cleaned results should be written to.

Proof in the Pudding?

● Global address space, 20mbps, eight days

○ 58,388 unique addresses found
○ ~80% of them not in public datasets

● Targeted address space (ISP, /48),
20mbps, 30 minutes

○ 4,901 addresses
○ ...mostly consumer premise equipment
○ ...with web login portals
○ OGOD THE FLASHBACKS

Linky Links

● IPv666 Blog Post
https://l.avala.mp/?p=285

● IPv666 GitHub Repository
https://github.com/lavalamp-/ipv666

https://l.avala.mp/?p=285
https://github.com/lavalamp-/ipv666

Conclusion

Recap
● Background

● IPv6 Security Implications

● The Scanning Problem

● Honeypotting for PSLAAC

● Modeling for non-PSLAAC

● IPv666

● Conclusion

Moar Links
● Entropy/IP

http://www.entropy-ip.com/

● 6gen
https://zakird.com/papers/imc17-6gen.pdf

● Clustering of IPv6 address structure
https://arxiv.org/pdf/1806.01633.pdf

● IPv6 hitlist
https://ipv6hitlist.github.io/

http://www.entropy-ip.com/
https://zakird.com/papers/imc17-6gen.pdf
https://arxiv.org/pdf/1806.01633.pdf
https://ipv6hitlist.github.io/

Q&A

THANKS!
<3

Chris Grayson

@_lavalamp

Marc Newlin

@marcnewlin

