NIiXU

cybersecurity.

It WISN't me, attacking industrial wireless mesh networks

Introduction

= Erwin Paternotte
» |[ead security consultant

@stokedsecurity

Ukraine

‘Moldova

~ ~__ Black Sea

Barcelona .
(o]

Tyrrhenian Sea ~'éreece

f Mediterranean Sea
(Tunisia

-

6,772km

= Mattijs van Ommeren
* Principal security consultant
= @alcyonsecurity

Uzbekistan '

- Caspian Sea Turkmenistan |

Azerbauan Afghanis

y .) 6h30min

N

S| from AED 1,558

‘¢l Syria ‘,

b
P
(O
R

o, NN
Arabian GUi_ g
wun NniXU

Industrial (r)evolution

A brief history of control systems:
= ~1940: Air: Pneumatic logic systems: 3 - 15 psi
= Mid 1950: Analog: Current loop: 4 - 20 mA
= Mid 1980: Digital: HART, Fieldbus, Profibus
= Late 2000: Wireless mesh networks
= WirelessHART (09/2007)
= |SA 100.11a (09/2009)

28.11.2018

Previous research

= Security considerations for the WirelessHART protocol, Shahid Raza et al, 2009
= https://ieeexplore.ieee.org/document/5347043/

= WirelessHART A Security Analysis, Max Duijsens, Master (2015)
= https://pure.tue.nl/ws/files/47038470/800499-1.pdf

= Attacking the plant through WirelessHART, Mattijs & Erwin, S4 Miami (2016)
= https://www.youtube.com/watch?v=AlEpgutwZvc

= Denial of service attacks on ICS wireless protocols, Blake Johnson, S4 Miami

(2018)
= https://github.com/voteblake/DIWI/ (video no longer available)

Wright’s principle: “Security does not improve until practical tools
; for exploration of the attack.susface are made available.” Nn1XU

Industrial process control loop

Controller
FIC 001

Signal - “Flow rate”
Remote Process

sP Value
: (PV)

Set Point
Local Iﬂ (SP) inputs
manual

sp

1 “ g ”
Controller output Signal - “Valve position

(CO) —>

Flow transmitter

FCV 001

Flow control valve

Process fluid flow (manipulated variable — MV)

5 28.11.2018 n I X U

Introduction to WirelessHART

= Supports HART application layer
= Single encryption cipher/key length (AES CCM¥*)

= Wireless technology based on Time Synced Mesh Protocol
developed by Dust Networks (now part of Analog Devices)

» Radio SoC exclusively provided by Dust Networks

oh

e T
5 28.11.2018 n I X U

Introduction to ISA 100.11a

= Relies on several standards: 6LoWPAN (IPv6/UDP)

= Ability to tunnel other protocols

= Mainly developed by Nivis

= Generic 802.15.4 chips provided by multiple vendors: STM, NXP,
Texas Instruments, OKI

Honeywell
YOKOGAWA THE POWER OF CONNECTED

. : 28.11.2018 NniXU

WISN topology

Plant Automation Application
Host

Flant Automation Network

Gateway,
Network
Manager,
Security
Manager

———— \ Field
Device

Field
Device

e |
/ %J % /
f) ~ ‘\
/ - ?1\ Router é&j
ff 7~ Field N
. \ N

-~

-
P

Device %
Device

Wireless
HART
Handheld

Field Field
Device Device

Protocol stacks

OSlI

Application

HART

WirelessHART

ISA100.11a

Command oriented, predefined data types and
application procedures

ISA native or legacy
protocols (tunneling)

UDP

Mesh network/6LoWPAN

Upper data-link sublayer

Auto-segmented transfer of large data sets, reliable
Transport
stream transport
Network Mesh network
Datalink Byte oriented, token, Upper data-link sublayer
master/slave protocol IEEE 802.15.4 MAC
: Analog & digital signaling IEEE 802.15.4 PHY
FIBEEE] (4-20 mA) (2.4 GHz)

IEEE 802.15.4 MAC

28.11.2018

IEEE 802.15.4 PHY
(2.4 GHz)

NniXuU

Common denominators

= 802.15.4 MAC layer at 2.4 Ghz

* Time Slotted Channel Hopping in order to:
= Minimize interference with other radio signals
= Mitigate multipath fading

= Centralized network & security manager orchestrates communication
between nodes

= Concluded that developing a common sniffer for both protocols
should be possible

10 28.11.2018 NiXU

WirelessHART & ISA100.11a Security

= AES CCM* (CBC-MAC with counter mode)
= Datalink Layer (integrity only)
* Transport Layer (encryption)

= Join process

= Handshake with Network Manager
= Shared secrets
= Certificates (ISA100.11.a only)

1 28.11.2018 NiXU

Keys galore

12

ISA100.11a

Global Key — well-known
K_open — well-known
K_global — well-known

Master Key — derived during
provisioning, used as KEK

K_join — Join process
D-Key — Hop-by-hop integrity
T-KEY — End-to-end encryption

= WirelessHART

28.11.2018

Well-known Key — Advertisements
Network Key — Hop-by-hop integrity
Join Key — Join process

Broadcast Session Key — End-to-end
Unicast Session Key — End-to-end

NniXuU

WirelessHART encryption keys

OSlI

Application

Transport

WirelessHART

Command oriented, predefined data types and
application procedures

Network

Auto-segmented transfer of large data sets, reliable
stream transport

Datalink

Mesh network

Upper data-link sublayer

Physical

IEEE 802.15.4 MAC

13

IEEE 802.15.4 PHY
(2.4 GHz)

28.11.2018

%0 broadcast

session key
=¥ join key <
le unicast
session key
%0 well-known/network-key

NniXuU

ISA100.11a encryption keys
OSl ISA100.11a Provisioning Joining

ISA native or legacy
protocols (tunneling)

Application

Transport UDP %‘ K_open / K_global %0 K_join %0 T-Key

Network Mesh network/6LoWPAN \—\
=) D-Kkey

: Upper data-link sublayer
Datalink IEEE 802.15.4 MAC

IEEE 802.15.4 PHY
(2.4 GHz)

14 28.11.2018 NIXU

%0 Global Key %0 Master Key

Physical

How to obtain key material

= Default keys

* Documented, more or less
= Sniffing

= During OTA provisioning (ISA100.11a)
= Keys stored in device NVRAM

= Recoverable through JTAG/SPI (as demonstrated by our previous
research)

15 28.11.2018 NiXU

WirelessHART default join keys

445553544E4554574F524B53524F434B
= DUSTNETWORKSROCK

EO90D6E2DADACEQ94C7E9C8D1E781D5ED
24924760000000000000000000000000
456E6472657373202B20486175736572

= Endress + Hauser

16 28.11.2018

Multiple vendors
Pepperl+Fuchs

Emerson

Fndress+Hauser

NniXuU

Sniffer hardware selection

= BeamLogic 802.15.4 Site Analyzer = NXP BeeKit
*= 16 channels simultaneously, no »= Single channel 802.15.4 with
Injection support, Basic Wireshark standard firmware (not open
dissector, Expensive (~ $1300) source), reached EOL

= Atmel RZ Raven
" Slngle channel 802.15.4 with standard Y
firmware, no free IDE (Atmel Studio

n/a), reached EOL

NniXuU

17 28.11.2018 =

NXP USB-KW41Z

18

Single channel 802.15.4 with standard firmware (not
open source)

Actively supported

Free IDE available

Powerful microcontroller (Cortex MO+)

PCB ready for external antenna (Wardriving!)

Easy firmware flashing via USB mass storage
(OpenSDA)

Documentation and examples, but with a few
Important omissions

28.11.2018

NniXuU

Demo 1: Kinetix Protocol Analyzer Adapter (sniffer)

I_._'| Protocol Analyzer Adapter Virtual PCAP IF: Local Area Connection 3 - | M # % | — X

802.15.4 2.4GHz channels: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
BLE channels: 37 38 39 All [| AddressFilter: |0x001122334455 Hopping Interval:

Sniffer Devices:

19 28.11.2018 NiXU

Recycle Bin

PACTware 4.1

Documents
on erwin'...

| 4

Protocol Analyzer Adapter Virtual PCAP IF: |
Kinetis

802.15.4 2.4GHz channels: 11 12 13
Protoc...

3

- M AF =X

14 15 16 17 18 19 20 21 22 23 24 25 26
BLE channels: 37 38 39 All ’ = 00

Sniffer Devices: Detecting Sniffers.

FlashBack
Express ...

USB-KW41Z <-> host communication

= Hardware is detected as virtual COM/UART port (Windows/Linux)

» Freescale Serial Communication Interface (FSCI) developed by NXP
for communication between host and device firmware.

» Host SDK for FSCI is available (with Python bindings)

= FSCI protocol is fairly well documented

» Allowed us to communicate directly with the USB-KW41Z without
requiring the SDK to be installed

21 28.11.2018 NiXU

USB-KWA41Z block diagram

OpenSDA
e Virtual COM port
o SWD Debugger
MSD Bootloader

K22F
w/DAPLink
Bootloader

KW41Z

29 28.11.2018

NniXuU

Building the toolset

= Extended the KillerBee framework with a driver for the USB-KWA41Z
= Allows us to comfortably capture 802.15.4 traffic into PCAP format
= Developed Scapy protocol support
= Allows us to forge and inject packets
= Developed Wireshark dissectors for WirelessHART and ISA100.11a
= Bringing WISN packet viewing to the masses
= Live capture and dissecting of WISN traffic on a single channel at

the time
2,

23 28.11.2018 NiXU

Demo 2: Sniffing traffic with KillerBee and Wireshark

02 85 09 12 52 00 01 00 0O 0O 00 00 0O 0O 0O 00
00 00 00 00 00 00 cd

Response: Packet | group: 84, opcoJe: 0d, crc: d8 ok:True
0000: 00 52 00 .

Set channel: 19
02 85 09 12 21 00 13 00 0O 0O 60O 006
00 00 00 00 00 ac
Packet | group: 84, opcode: od,
21 00
85 09 12 51 00 01 OO0 0O 0O 00 00
00 00 00 00 00 ce
Packet | group: 84, opcode: 0d,
51 00

ba 01 00 bb

o Packet | group: a4, opcode: fe, crc: ac ok:Tru? r1 IA)(lJ

zbwireshark: listening on '/dev/ttyACMo'

Terminal

S Bl &

B D

1l

>

=[] @)

erwin@ubuntu: ~

erwin@ubuntu: ~

e 1 @)

Time Slotted Channel Hopping

Slotted hopping
|

Channels

28.11.2018

Superframe

= Sequence of repeating channel hopping patterns

= Period usually between 512-4096 time slots

* Time reference
* WirelessHART: sequence number=0 (start of network manager)
= |SA100: TAI=0 (Jan 15t 1958, 00:00:00)

= Timeslot within a superframe denotes a communication link,
assigned by the Network Manager

o7 28.11.2018 NiXU

a) one time slot

Transmission starts Source listens

\ \
\ ACK

\

Destination listens Destination ACK starts
for the start of
message

cycle n-1 cycle n b) one superframe cycle n+1

28.11.2018

Implementing Time Slotted Channel Hopping

29

Both protocols require high speed channel hopping via predefined,
but different patterns.

FSCI communication too slow to tune into time slots (10ms)
= Solution: implement channel hopping in firmware
Two layers of encryption/authentication

= Solution: Implement in host software (Killerbee)
Abllity to inject traffic

= FSCI supports injection of arbitrary frames

= Solution: Implement frame injection in Killerbee, add protocol
support to Scapy for crafting packets A1XU

Firmware
Bare metal task scheduler

30

Task consisting of single (endless)

loop

Blocking function waiting for
events

Once a task is running, it has full
control

Cannot run longer than ~2 ms to
prevent starvation of other tasks

28.11.2018}

void MyTask (uint32_t param) {

osakEventFlags t ev;

while(1) {

OSA_EventWait (mAppEvent,
osaEventFlagsAll c, FALSE,
osaWaitForever c, &ev);

if(ev & & gSomeEvent) {

/* do stuff */
break;

}

break;

NniXuU

Bare Metal vs. RTOS

 Most RTOS use pre-emptive task scheduling

* Nice for hard real-time requirements but:
» Relatively large overhead
« Context switches
« Deal with synchronization issues

« Bare Metal uses cooperative multi tasking
« Dependent on other tasks behaving nicely
« Can avoid most synchronization issues
« Faster execution

24l 28.11.2018

NniXuU

Firmware
Tasks/components

32

Framework

Memory Manager
MAC/PHY

Serial Manager
Timers

LED driver

FSCI

« Application
« 802.15.4 MAC extension layer

28.11.2018

Source/destination/PAN info

ISA100/WirelessHART

Extract link information
Timeslots, channels

Timeslot synchronization
Channel hopping

NniXuU

How to synchronize?

= Both protocols support advertisement packets

= Broadcast by network manager

= Contains information about free join slots

= Timing information to synchronize on

= Hopping patterns are documented in protocol specifications

33 28.11.2018

NniXuU

Channel selection

= WirelessHART

= ActiveChannel = (Channel_Offset + absolute slot number) %
number of active channels

= Channel = ActiveChannelArray [ActiveChannel]
= |[SA100

» ActiveChannel = (absolute slot number — ChBirth) % ChCycle

= ChBirth = Channel number assigned at tO (International Atomic
Time, TAl)

= ChCycle = Number of channels x channel rate

34 28.11.2018 NiXU

Channel hopping

Scheduling

85

38 ms

48 ms

A

v

A

v

25

11

16

13

21

RS

12

14

23

21

15

24

22

25

11

16

13

21

Time slots/channels

28.11.2018

v

NniXuU

Demo 3: Sniffing with channel hopping

36

: **%%k* WirelessHART - asn:626928 ch:12
15 | ch:0 rssi:111 time: 1388081 len: 62 crc:

41 88 30 90 06 ff ff 01 00 31 00 00 09 91 30
of ff 7f 00 00 03 01 01 00 01 00 aa 02 00 04
01 01 e9 45 04 00 80 06 00 12 4d 00 15 4d 00
4d 00 42 4d 00 61 4d 00 62 4d 78 35 2a d9 1b

: **%%% |irelessHART - asn:626992 ch:1f6
16 | ch:0 rssi:121 time: 1508080 len: 62 crc:

41 88 fO 90 06 ff ff 01 00 31 00 00 09 91 fO
of ff 7f 00 00 03 01 01 00 01 00 aa 02 00 04
01 01 e9 45 04 00 80 06 00 12 4d 00 15 4d 00
4d 00 42 4d 00 61 4d 00 62 4d 6a 97 dd a5 07

: **xx% irelessHART - asn:627184 ch:13
17 | ch:0 rssi:106 time: 1548079 len: 62 crc:

41 88 30 90 06 ff ff 01 00 31 00 00 09 92 30
of ff 7f 00 00 03 01 01 00 01 00 aa 02 00 04
01 01 e9 45 04 00 80 06 00 12 4d 00 15 4d 00
4d 00 42 4d 00 61 4d 00 62 4d 77 ee 52 79 e4

22

M.BM.aM.bMw. Ry "

NniXuU

Terminal

erwin@ubuntu: ~/killerbee

erwin@ubuntu: ~/killerbee

:~/killerbee$ zbwireshark -c@

B T3 @) 11:42PM

Unauthenticated attacks

= Signal jamming through continuous power emission
= Concurrent packet transmission

= Join slot jamming

= Selective jamming transmitter communication

= Transmitting fake advertisements

38 28.11.2018

NniXuU

Demo 4: Advertisement jamming

89

mvo@mvo-virtual-machine: ~
mvo@mvo-virtual-machine:~$ whjammer -c 20
Resetting CPU...
Tuning to channel 20
Start jamming channel 20

Enabling jammer
FSCIPacket | ch: © group: bb, opcode: 02, crc:

Packet 1 | ch:0 rssi:108 time: 385612 len: 62
41 88 90 90 06 ff ff 01 00 31 00 0O 28
Of ff 7f 00 00 03 01 01 00 01 GO0 cc 08
01 03 da 48 04 00 80 06 00 03 4d 00 65
4d 00 25 4d 00 27 4d 00 51 4d 7d e4 76

: Tracking network PAN ID: 1680

28.11.2018

b9 ok:True

crc:True
d9 90 11
00 04 00
4d 00 Oe
71 67 TF

NniXuU

M 13 @) 11:07PM %
Terminal
erwin@ubuntu: ~

erwin@ubuntu: ~

:~$ zbwireshark -c 20

) Ko

=@ N0 R D DD

I

Authenticated attacks

= Nonce exhaustion

= Both protocols use a semi-predictable nonce counter to feed the
AES CCM* algorithm

= Adevice will reject a packet if a nonce value is lower than a
previously received one

» Spoofing a packet with a maximum nonce value, causes legitimate
packets to drop

» Sending spoofed measurements to influence the process

a1 28.11.2018 NiXU

Conclusions

= Still a large unexplored attack surfaces due to complexity of the
protocols

* The released tools and research will fill this gap and enable security
researchers to move forward in the field of WISN research

= Using WISN technology for process control and especially functional
safety applications is probably not a good idea, and should be
reconsidered

42 28.11.2018 NiXU

Future research

Expand tool with more theorized attacks

Research forced rejoin triggers

Mapping WISN locations (wardriving)

Implementation specific vulnerabilities (transmitters, gateways)

43 28.11.2018

NniXuU

Questions & thank you

= Our code is soon available at: https://github.com/nixu-corp

= Thanks to the following people for their help:
= Alexander Bolshev (@dark_k3y)
= Sake Blok (@SYNDbit)

44 28.11.2018

NniXuU

