	•	• •	•	•	•	٠	•	•••	•	•	•	•	• •	• •	•	•	٠	٠	•	• •	٠	•	•	•	• •	•	•	•	•	•	•••	•	•	٠	•	• •	•	•	•	• •	• •	٠	•	• •	•	•	•	•	•	•	•	• •	•	•	•	• •	•	٠	• 1	ŀ
	• •	• •	•	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	•	•	•	h 1	•	•	•	þ
	• •	• •	•	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	ŀ
	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	ŀ
	•	• •	•	٠	٠	•	•	•••	•	•	٠	•	• •	• •	•	٠	•	•	• •	• •	•	٠	•	• •	• •	•	•	•	٠	•	•••	•	•	•	• •	• •	•	•	•	• •	• •	٠	٠	• •	•	٠	•	• •	•	٠	•	• •	•	٠	•	• •	•	٠	•	ŀ
· · · · · · · · · · · · · · · · · · ·	•	• •	•	•	•	٠	•	• •	•	•	•	•	• •	• •	•	•	•	٠	• •	•	٠	•	•	•	• •	•	•	•	•	•	•••	•	•	٠	•	• •	•	•	•	• •	• •	٠	•	• •	•	•	•	• •	•	٠	•	• •	•	•	•	• •	•	٠	•	ŀ
	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	•
	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•
	•	• •	•	•	•	•	•	• •	•	•	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	-

Vote of No Confidence: Second Factor Correctness

November 2018

SMART AND SAFE DIGITAL

· · · · · · · · · · · · · · · · · · ·	 	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •
••••••	 		
· · ·	 		
Contont	 		
Content	 		
••••••	 • • • • • • • • • • • • • • • • • • •	•••••••••	• • • • • • • • • • • • • • •

01 Introduction to Electronic Voting

02 Voting with No Confidence

03 Security Details

04 Second Factor Correctness

05 Use Case

06 Final Remarks

 Electronic voting could be summarized as a protocol allowing people to vote using information technologies.

• There are **many** proposals:

• There are **3** main **security requirements** in electronic voting:

Election results cannot be modified

Ballots cannot be linked to their caster

All the process can be verified by an external authority.

- These security requirements are more challenging as the technology covers more stages of an election:
 - For ballot printing **privacy** and **verifiability** remain the same.
 - With voting devices all properties are required, but the environment is more controlled.
 - \circ Do not google Brazilian or US voting machines.
 - **Remote** electronic voting is the **most challenging** approach.

Which are these challenges?

Problems arise from dealing with two confronted terms:

- Privacy vs integrity
 - Electoral roll against anonymity
- Privacy vs verifiability
 - $_{\odot}\,$ Guarantee proper behavior without leakages
- Security vs performance
 - $_{\odot}\,$ This one is a very old friend.
- Integrity vs usability
 - Make cryptography easy

The 4 **phases** of a remote electronic voting protocol:

- **Digital signatures** allow control over electoral roll.
- Encryption prevents voting options to be disclosed.
- We need to **anonymize encryptions**: (homomorphic operation)

MIXING

- Chose a random permutation
- Chose random **masking** values for each ballot
- Permute the ballots **applying** the masking values.

HOMOMORPHIC TALLYING

- **Encrypt** in a **specific** way considering the homomorphic operation.
- Use the homomorphic operation with **all** the ballots.
- Decrypt the **resulting** ciphertext.
- **Recover** the messages from the result.

• Data is **anonymized**, but how can correctness be **guaranteed**?

ZERO KNOWLEDGE PROOFS

 A protocol by which a prover can guarantee a statement to be true without giving information about the a secret parameter:

Where are these ZKP's used?

- Decryption: Proof to be using the appropriate private key
 Secret parameter: The key
- Encryption: Proof to the plaintext to be a candidate
 - Secret parameter: The candidate
- **Mixing:** Proof a permutation and masking to be properly applied
 - Secret parameter: The permutation and masking values

- These are the typical requirements:
 - **Require** public key cryptosystems
 - Proofs **require** trapdoor functions
 - **Require** PKI for digital signatures
 - Voters should be able to vote from mobile devices. (Efficient)
 - Minimize traffic in the network

- Widely known solution:
 - There is no solution: Do the best with what we have!!!

INTEGRITY vs USABILITY

- Integrity requires the use of:
 - Cryptography
 - Identification protocols
 - Zero knowledge proofs
- Voters must use it without knowing how to
 - All cryptographic operations should be transparent for the voter
 - The protocol must be **easy** to **identify** as a traditional voting protocol
- Solution:
 - Voting device **computes** cryptography, and voter only selects a candidate

INTEGRITY REQUIREMENTS

• This approach requires trust in two components:

- The required assumptions are very **hard** to meet in **real world**
- Solution:
 - Do not trust anyone!!

Vote with No Confidence

VERIFIABILITY AGAINST UNTRUSTED DEVICES

Three different kinds of verifiability

CAST-AS-INTENDED VERIFIABILITY

CHALLENGE THE SYSTEM

- The voter **asks** to generate a ballot
- The voter **decides** either to send the ballot or to verify its content
- A second device validates the content
- **Repeat** this until the device is trusted
- Then, send the vote

PROOF OF CORRECTNESS

- The voter **asks** to generate a ballot
- The voter **asks** for a ZKP for this ballot
- The ballot is **sent**
- The server validates the proof and returns a code
- Voter knows the code is related with her voting option
- Voter sends a validation code to confirm correctness

CHALLENGE THE SYSTEM

ADVANTAGES	DISADVANTAGES
Cheating device do not know if it is challenged	Cheating probability rely on the amount of validations from the voter
The validation is sound (no false positives)	Requires a second device with knowledge of the protocol
A voter can generate trust on her device	They do not care (not easy to use)
	Voter never checks the ballot sent
	Social engineering attack might succeed (it is voluntary)

PROOF OF CORRECTNESS

ADVANTAGES	DISADVANTAGES
Easy to validate by voters	Probability of cheating increased (but low)
Part of it might be validated by auditors	Entire proof can only be validated by voter
Encourage voter participation	They do not care
Proof apply to the ballot sent	
Only voting device needed (or not)	

Security Details

VERY SPECIFIC CASE

- We use a protocol to achieve:
 - Privacy
 - Correctness
 - Verifiability

• Elections are a very controversial topic

- Are there other **transactions** where a device cannot be **trusted**?
 - Fortunately (for us) the response is: **YES!**

- Authentication:
 - It is the **first** security **measure**
 - Also faces the restriction of security vs usability
 - **Short** passwords
 - Many **recovery** mechanisms
 - Historically has been broken too many times
 - Companies using bad practices
 - Users using bad passwords

SECOND FACTOR AUTHENTICATION

• The solution proposed is the Second Factor Authentication (SFA):

ADVANTAGES	DISADVANTAGES 🔊
Prevents unauthorized access	Weak against corrupted devices
Easy to use (sometimes)	
Offers sort of a physical protection	

- Why is authentication important?
 - To prevent an attacker from impersonating a user
- Does SFA prevents that from happening?
 - It certainly **prevents** authentication when **user** is **not using** the application
- What happens when the user is already using the application?
 - The **attacker** successes on impersonating:
 - Signing, Messaging, Online Banking, Play games,...

• Used **properly**, SFA can prevent **unintended** authentications

- But once authenticated, the common tools to **prevent attacks** are:
 - Receiving a **confirmation** message for specific **actions** (CODE)
 - Vague (No information about the action)
 - Allows forgery
 - Receiving a very **precise confirmation** message (CODE)
 - Hardly private (contains the amount)
 - Allows forgery

- A better solution should:
 - **Prevent** any **unwanted** action to happen
 - Maintain the **privacy** of the action
 - Allow verification by user
 - Be **usable** (at least as SFA)
- These properties are the **same** than in **remote** electronic **voting**
 - Can the **proof of correctness** approach be **generalized**?

Second Factor Correctness

Assuming a case in which **privacy** and **correctness** are **not** required:

- The **information** of the transaction is **sent** to the user
- The user **accepts** the transaction
- The server **proceeds** with the transaction

For **privacy** we could just encrypt the content:

- Requires dealing with **keys** (symmetric apparently)
- The key is still on the device (needs to be trusted)

- What happens if the **device**, or the software used, is **corrupt**?
 - **PRIVACY**:
 - The device **knows** all the transaction information
 - Fixing this has a big **impact** in **usability**
 - INTEGRITY:
 - The **information** shown to the user might be **fake**:
 - The device modifies the **petition** and the **response**
 - The **user** still proceeds by **confirming** the operation
- Additional device is needed to prevent integrity disruptions

- Entities and devices involved in the protocol are:
 - User (U) willing to perform an action
 - Entity (E) offering the action as a service in the Internet
 - We have the **original** device running the **application** (the corrupted device CD)
 - There is also an **additional** device for **validating** purposes (the validation device VD)

VALIDATION DEVICE

- Requirements for VD:
 - Non accessible by **network** connection
 - Able to read **QR** codes
 - Cryptography capable (symmetric cryptography and hash functions)
 - An **output** channel (screen or something)
 - Enough **storage** to store a symmetric **key**

Petition submission phase:

- U uses CD to **send** a petition to E servers
- E servers store the petition and put it on **hold**
- E servers derive a **short-lived** key using the original **key** and a **timestamp**
- E encrypts a summary of the transaction information + timestamp and sends it back to CD
- E computes the **validation code** using the short-lived key, the generated ciphertext, and the timestamp
- E computes the **confirmation code** using the short-lived key, the generated ciphertext, and the timestamp
- CD **presents** this information as a **QR code**

Petition validation phase:

- U uses VD to **scan** the code and obtains a timestamp and an encrypted ciphertext
- VD validates the timestamp to be close to the actual time
- VD **derives** a short-lived key using the timestamp and its secret key
- VD computes a validation code using the ciphertext, the short-lived key and the timestamp
- VD computes a confirmation code using the ciphertext, the short-lived key and the timestamp
- VD **decrypts** the ciphertext and **shows** the information to U
- VD shows the **validation code** to U

Confirmation phase:

- If the information shown by the VD is **not correct**, U does **nothing**
- Otherwise, U inputs the **validation code** to the CD
- CD **sends** the validation **code** received to E servers
- If the validation code received matches the previously generated one:
 - The operation is valid and E can **proceed** with it
 - E also sends **confirmation** code to the CD
 - CD shows the confirmation code to U
- Otherwise, the CD is assumed to be misbehaving U must contact E using another device

Use Cases

ONLINE BANKING

- Transactions with banks require both:
 - Correctness
 - Privacy
 - Verifiability
- Users accept extra security measures when dealing with money
- Banks are already providing **similar** solutions
 - Usually involving **SMS** with codes
 - Also phone calls
 - Security numbers from a second device

ALREADY EXISTING SOLUTIONS

Mobile Banking already have some solutions:

SMS + CODE

Please use PIN Number 548914 to complete your transaction for AED 681.45 with card ending If you did not request a PIN please call us. T&Cs apply

RANDOM CODE

ONLINE BANKING

- The proposal consists on a second device (SFC device):
 - With a secret **seed** (key) known by the bank
 - With a small **display**
 - Able to scan **QR** codes
 - Able to run Key Derivation Functions (KDF)
 - Able to run **symmetric key** cryptography
 - Able to run SHA3 hash function.

ONLINE BANKING

- Security **relies** on the SFC **device**
- To prevent attacks:
 - It is more **conservative** to not allow internet connection
 - Capabilities must be very **restricted**
 - **QR** scanning is the main **threat** vector
- **Physical** attacks can be **prevented** in different ways but increasing the **cost** of the device.
 - The seed could be protected
 - The rest is **not** as **critical** as the seed

QR CODE GENERATION

QR CODE GENERATION

- When the user performs an action:
 - The bank **process** the petition
 - **Derives** a short-lived key (s) = KDF(seed, timestamp (ts))
 - Generates a QR code with the encryption (e), using the users symmetric key (s), of the following information:
 - **Type** of transaction (t)
 - **Date** of petition (d)
 - Amount involved (a)
 - Additional **data** (x)
 - Generates the validation code (c) = encode(SHA3(t,d,a,x,s,"validate"))
 - Generates the confirmation code (c) = encode(SHA3(t,d,a,x,s,"confirm"))
 - Sends the QR code containing (ts) and (e) to the application

SFC DEVICE PROTOCOL

SFC DEVICE PROTOCOL

- The user validates by:
 - **Scanning** the QR code with the SFC device
 - The SFC checks if the **(ts)** is in an appropriate time **frame** considering **current** time
 - The SFC derives the short-lived key s = KDF(seed,ts).
 - The SFC **decrypts** (e), using (s), and gets:
 - Type (t), date(d), amount(a), and additional data (x)
 - The device generates the validation **code** as Encode(SHA3(t,d,a,x,s,"validate"))
 - The device generates the confirmation **code** as Encode(SHA3(t,d,a,x,s,"confirm"))
 - The device shows the **information** of the transaction and both **codes**.
 - The user **inputs** the **validation** code to the application

• Once the bank receives the **validation** code:

- Validates the received code is the same as the **previously computed** one
- Sends the **confirmation code** to the client's device
- Waits an **acknowledged** amount of time
- **Proceeds** with the transaction.
- If the validation code was **not correct**, it would mark the **transaction** as **invalid**

- The **requirements** in the communication does **not** seem to require a **ZKP**
- However, they **can** be **used** for:
 - Allowing verification from an external entity without leaking operational information
- This advantage does not seem important for the purpose, but the disadvantages:
 - ZKP are **slower**
 - ZKP require additional **arithmetic** in the device
 - The device would require more storage and memory
 - Basically..... It would make the SFC more **EXPENSIVE**.

Final Remarks

DEVIL IS IN THE DETAILS

- The **solution** proposed is **not** unbreakable
- It drastically reduces the success probabilities from an attacker with control of the user's device
- Unfortunately, this is not the only **attack vector:**
 - Getting access to the entity's server would still allow an attacker to cheat, using validation devices keys
 - Physical access to the validation device could also be enough to obtain information about the key
- It is important to know the limitations of the solution so that proper mitigation techniques can be implemented

FUTURE WORK

- MAKE IT REAL: Theory is always beautiful, but its time to get the hands dirty
- Key rotation on the device
 - Keeping always the same seed in the device is dangerous
 - Creating a mechanism to change the key using QR reader seems risky

• QR code readers are too old-fashioned

- Why not something like google **glasses**?
- Does secure watch sound as cool as smart watch?

THANK YOU!

> DARKMATTER 51