IDINC ImEE

3INCHmEE

MALWARE DETECTION

based on

MACHINE LEARNING

Application and practice of machine learning in anti-malware

Ye Chao
Beijing Rising

Experience

3DINCHmEE

2012

x86 Instruction Flow
based Predictor

Toss
0850

\,ETED\; ,

PDF Exploit Predictor

3INCHmEE

2012

Malware Predictor based on Decision-Tree

For Windows

OBS e structure

e Decision-Tree

2013
o

Min-Hash & LSH based Clustering

find similar historical samples quickly and fall into one cluster
always select the latest sample to represent the cluster

Hash Min-Hash LSH-

270 millions strings filter 1 million+ cluster

S INCHtmee

2016

RDM +

malware predictor based on Random-Forest

For Windows PE
Tens of millions of training samples
Features are extracted from file structure/content/analysis
Use the Random Forest

RDM +

« A cautious predictor for malware detection

« It relies on file structure and part of the content

« It doesn't look so smart, but it improves
through high frequency learning.

Feature Engineering

2 INCHmeE

It is often said that

“In the application of machine
learning, the feature engineering
determines the upper limit of the
model and algorithm performance.”

31 CHmmEE

4778-D
Features Array

For RDM+

describes a file from multiple aspects
from file content and file analysis results

3DINCHmEE

Program Structure and Properties

Section Table Analysis
Entropy 'Size' Fields

Relative Position of Important Dat

Import/Export Symbol Names

Embody the intent of the program

An algorithm called IMPHASH is widely used in malware classification

Hash Trick

there is no need to create an encoding for each name
count the names by name hash

3INCHmEE

1024... 1024...

For IMPORT names For EXPORT names

hash(CreateFileA)%1024 hash(setGlobalCallBack)%1024

Instructions Started from

Entry Point and Export Functions

1102

OPCODES

Frequently used
instructions are
grouped, others
are completely
reserved.

117

OPERAND-TYPES

In the obfuscated code,
both the immediate
number and the
register are heavily
used.

S INCHtmee

Strings in Section-Tables/Resources/Signature

Use "Alnum” table

“Micorsoft Windows ”

¥

‘1‘2‘1‘3‘3‘2‘1‘1‘1‘1‘1‘1'

3DINCHmEE

Features from Analysis

Insert many fake API calls in code to avoid the
detection of some antivirus software, such as:
Injector, Loader, Kryptik, XPACK, Crypter

push
call
push
push
call
push
push
push
push
call
push
push
push
push
push
call
push
call
push
push
push

w

©®00Aa0A0000OALOOOCALOOAO
w

w

w

w

:CharPrevExA

push
push
push
mov

push
call
mov

call
call
call
push
call
push
call
push
call
push
push
call
push
call
push
call
push
push
push
push
push
call
push
call
push

eax
48h

ecx

ecx, dword_417654
ecx

VirtualProtect

eax, [esp+74h+uBytes]
sub_4e1ece
ds:GetlLastError

ds: i
e
ds:lLoc

e ; hMem
ds:lLocalfree

e ; hMem

; uMinFree

o
“w
r
o
-
—
o

m
\

] ; cbNewSize
e 3 hMem

ds

e ; hDC

ds: C

e ; hknd
ds:GetD

e ; flProtect
e ; flAllocationType
e ; dwSize

e ; lpAddress
e ; hProcess
ds:VirtualAllocEx

e 3 hkind
ds:IsWindowVisible

e ; nCmdShow

CASE 1

3DINCHmS

The program is compiled by the ordinary
compiler,but there is a lot of high entropy
data in the code. After execution, the data
is decoded into code and executed, such
as :Injector, Loader, Kryptik, Crypter

Navigator Scale: 1 pixel = 1024 bytes; Range: 00401000-0044E000

\ |
)

Data ll Regular function

)

4

External symbol

| Library function Unexplored ll Instruction

inMain@16

proc near

eax, [ebp+var ~]

dword ptr [eax+1Ch], offset[dword_433C6@]
1,

ecx, [ebp+var_4]

dword ptr [ecx+2@h

edx, [ebp+var_74]
edx, 1
[ebp+var_74], edx
eax, dword_44C6C38
eax, 1
dword_44C6C8, eax
dword_44C6C8, ©
loc_43C531
[ebp+var_74], ©
[ebp+var_78], @
ecx, dword_44C684
dword_44CC80, ecx
edx, [ebp+var_4]
eax, [ebp+arg_4]
ecx, [eax+3@h]
[edx+6Ch], ecx
edx, [ebp+var_4]

call dword_44(C634

offset sub_409EF@

CDD85B79900F C8FB82768808576A8F38 I T, SO ——

Malware. XPACK-HIE/Heur!1.9C48 P

SIINCHmEE

Symbols distribution is Symbols is densely distributed
sparse in clean program in some malware

push eax
push ebx push 406h
mov ge{:po_var 4], ebx push ecx
s:cef_api_hash
WOV J offset aB81d8601d4b8c6 ; mov ecx, dword_417654
push ; char * push ecx
call call VirtualProtect
g:: mov eax, [esp+74h+uBytes]
test eax, eax call sub_4e1ece
jnz short loc_10029588 call ds:GetLastError
o on E:::::;‘-“] call ds:GetTickCount
test eax, eax push e ; uMinFree
jnz short loc_10029588 call ds:LocalCompact
mov esi, ebx push [} ; hMem
Loc_10029588: ; CODE XREF: sub_10029557+ call dsilocalfres X
mov eax, [ebp+arg 0] push e 3 hMem
test eax, eax call ds:LocalFlags
z short loc_10@29592 push e ; cbNewSize
lea ebx, [eax+4d) push e 5 hMem
hoc_10029592: ; CODE XREF: sub_10029557+ call ds:localShrink
push [ebpearg_C] push e 3 hDC
lea eax, [ebpearg 8] call ds :WindowFromDC
push ecx .
wov ecx, esp push e . 3 hind
push eax call ds:GetDC
call sub_100@6E00 push e ; flProtect
;::1 :::-190197“ push 2] ; flAllocationType
push eax push 2] ; dwSize
push esi push e ; lpAddress
push. A push e ; hProcess
as:<<;e:\nnmh:= call ds:VirtualAllocEx
— push [; hiind
call ds:IsWindowVisible
push e 3 nCmdShow

The code between the first symbol and the
last symbol almost fills the entire code
section

.text

.F£x£;1ﬂ££149A

:1eeel14es
moy

o
qword ptr [ebp+var_1C], xmm@
[ebp+var_14]1, @

ext:10001411 call ds:ce‘_st"ing_ut‘Lé_tc_ut;S|
. text: 10001417 mov dword ptr [esi+14h], OFh
.text:1000141E add esp, @eCh
.text mov

110001421

dword ptr [esi+l@h], @

:10840FB9
:10840FBE

:108406FAA z
:18848FAC

push

short loc_10848FC1

:18840FAD

call

Very little code between the first
and last symbols in some

,,44_4*_413343115lcxtz;444444444pugn4444!UX444444444444444444444444444444ﬁ

mov

| text:004481D8

push esi

push edi

mno {ehpems_sxc old _asp], esp
{text:98444C56 call ds:GetVersion I

XOT UK, Tux

mov dl, ah

mov dword_44D298, edx

; void __stdcall RtlUnwind(PVOID TargetFrame,

ecx, eax

; CODE

Ltext:

Ltext:004481D8 RtlUnwind:

text:0044381D8 ds:__imp_RtlUnwind

e CEXLY AUOC T T T T T T E T E T E s E T T e
Ltext: E align 1@een

SDINCHmREE

Features List

ISRR: imported symbols referenced ratio.

ISCR: imported symbols invoked ratio.

ILRR: imported libraries referenced ratio.

ISDD(Max/Min): the density of symbols distribution in file.
RPOS1: the offset of first symbol divided by the section
size.

EDCR: the compression rate of the executable data in program.
IBR: the ratio of branch instructions to total instructions
(200).

IDR: to measure whether an instruction can be statically
tracked.

DER: how many export symbols are in the data segment.

BSR: the ratio of BSS section size to image size.

MSGR: the ratio of the maximum size between two symbols and
the code section size.

Model Training and Combination

Training Samples Set

20 million samples

remove duplicate
samples

cluster filtering

100 million malware &
clean files

~ 700G

actual number of bytes

Algorithm Selection

Decision-Tree

e oble fora Random-Forest [y

large number of + The output is too
samples « Good effect on training set simple to

+ Unable to complete + Key features can be found concatenate
training + The training process is long

3DINCHmEE

Model Combination

4778-D

100 Trees

in forest

Prediction
Unable to meet the
l hourly update
Model for
dimensionality reduction

Takes 120+ Hours

Model for

Model for Model f
Dimensionality Precc)jiectiocr)n
Reduction

4778-D input 100-D input

100-D output 100-D output
Dimensionality reduction tool Prediction tool
Updated every few months Hourly update

After dimensionality reduction, the training difficulty is greatly reduced.

Prediction Model Training

Basic Samples & Latest Samples

BS: A set of historical samples after filtering and dimensionality reduction

+

LS: Recent major malware and clean files set, includes FPs

5 million samples
covering about 50 million files

3DINCHmEE

Prediction Model Training Time

@ 0.78 hour

Q Hourly update Q

Model fine-
tuning

Mitigating false positives

3DINCHmEE

Missing malware is better
than false positives!

Choosing the right algorithm

In order to mitigate the false positives, we think that over-
fitting is the advantage.

Masking false positives using hash value of features

In a production environment, the key-value database is used
to mask false positives before predictions

Carefully selected training samples

Select the right malware files and more clean files into the
training set

How do we do that?

The cloud service

2 INCHmeE

Random-Forest cause the "model explosion'
problem, making the model unsuitable for
distribution to the host.

Compensating for
model defects

One is to maintain the most timely
training and update, the second is to
maintain timely false positives removal.

Requires high
frequency updates

Operation Process

—) Traditional Mechanism (Scanner/Sandbox)

Prediction

@ l Sample Tagging l Cloud
Service

4778-D 100-D
e =

Latest
samples
manual tagg/'ng\ /

D.R Mode/l

Prediction

Latest —— Model
samples Training

o

Manual operation

Performance

3DINCHmEE

in the Ist month

80~90% Positives
~0.2% FPs

60~70% Positives
<0.1% FPs

after 3 months

In the 1Ist month

< < <

24/66

Detection
Aegislab
AVG
AVware
CrowdStrike Falkcon
Cyren
Endgame
F-Prot
Ikarus
McAfee- GW-Edition
Qihoo-360
SentinelOne
VIPRE

Ad-Aware

Avast

Avira

Baidu

Cylance

eGambit

ESET-NOO32

Fortinet

Kaspersky

Rising

LI

ZoneAlarm

AbnLab Vi

opbErPREPEPEPPEPDPPDP

g5INCHmAE

17 engines detected this file

. SHA-250 1060661 1080468 1c0bAS a5 5350 181 4801 63D 578 76cTe0906 3410220708

EXE Fie name NOtepad mxs sxe
Fite size 197 M0

o \ . . -
{ LAt anahysls 2017-10-24 034836 UTC
(17/65)

Detection Details Community

DR/AUOitGan2 Bhav

W32 DropperZbats, Trojan

M Trojan-SpyWni2 2botd) CrowdStrike Fakon

malicious_conhdence 70% {0

Cytance Unsafe eGamiit

malicious_confidence 96

rmaalitiours Chigh confidence) ESET-NOD32

A varsant of Win3 2/ Ingecior Autolt LK

W32 ryector LKt Kaspershy

Tigjan WaniZAutordio

McAfee-GW-Edition BehgvesLior Wil Aget.ic Qthoo-360

HEURSVMIQ | 5610 Madware Gen

{
| <

A\1‘\\ A0 1480 sUC 31 ":q
Riging SentineiOne
A {ROM < cmRazg T Vgl plti a4z Da b

Sophos ML A hevrsk Theacker

ST eNZINe - Malous

Backdoor/ Fomon evia

O L

ZoneAlarm A HEUR Trodan Win 32 Genernt Ad-Aware

Other File Formats

Different Formats vs. Different Features Engineering

SWF EXPLOIT

Obfuscated Script

PDF EXPLOIT

Features are extracted from flash structure and 3-grams of
strings in ABC. Recent 30-Day performance: 520/563 ~ 92%,
defeated almost all EXP-KITs.

After special normalization, extract script skeleton features. It is
still being improved because it often conflicts with ' min.js'.

Features come from PDF keywords and embedded JS. About
88% of PDF exploits/phishing can be detected.

Conclusion

Al/ML can improve the productivity of all aspects of anti-malware.
The goal of using ML needs to be clear.
In our application, the feature engineering directly affects the final effect.

It's important to mitigate false positives.

31 CHmmEE

Continue To Challenge

Try to create a low-dimensional RDM +
More Feature Engineering
Behavior sequence + LSTM

Understanding API Calls

and so on

IDINCHmEE

THANK YOU

