
Expediting Exploitability Assessment
through an Exploitation Facilitation

Framework
Xinyu (X.Y.) Xing

JD.com

11/1/18 Email: xxing@ist.psu.edu 1

Background
• All software contain bugs, and # of bugs grows with the increase of software complexity

• E.g., Syzkaller/Syzbot reports 800+ Linux kernel bugs in 8 months
• Due to the lack of manpower, it is very rare that a software development team could

patch all the bugs timely
• E.g., A Linux kernel bug could be patched in a single day or more than 8 months; on average, it

takes 42 days to fix one kernel bug

• The best strategy for software development team is to prioritize their remediation efforts
for bug fix
• E.g. based on its influence upon usability
• E.g., based on its influence upon software security
• E.g., based on the types of the bugs
• … …

11/1/18 Email: xxing@ist.psu.edu 2

Background (cont.)
• Most common strategy is to fix a bug based on its exploitability
• To determine the exploitability of a bug, analysts generally have to write a

working exploit, which needs
1) Significant manual efforts
2) Sufficient security expertise
3) Extensive experience in target software

11/1/18 Email: xxing@ist.psu.edu 3

Crafting an Exploit for Kernel Use-After-Free

11/1/18 Email: xxing@ist.psu.edu 4

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

syscall_A(…)

syscall_B(…)

Freed
object

Object
carefully
selected

syscall_M(…)

Proper time
window to

perform
heap spray

Heap sp
ray

1. Use control over program counter (rip) to
hijack control flow

2. Use the ability to write arbitrary content to
arbitrary address to escalate privilege

3. …

Challenge 1: Needs Intensive Manual Efforts
• Analyze the kernel panic
• Manually track down

1. The site of dangling pointer
occurrence and the corresponding
system call

2. The site of dangling pointer
dereference and the corresponding
system call

11/1/18 Email: xxing@ist.psu.edu 5

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

syscall_A(…)

syscall_B(…)

Freed
object

Challenge 2: Needs Extensive Expertise in Kernel
• Identify all the candidate objects that

can be sprayed to the region of the
freed object
• Pinpoint the proper system calls that

allow an analyst to perform heap spray
• Figure out the proper arguments and

context for the system call to allocate
the candidate objects

11/1/18 Email: xxing@ist.psu.edu 6

Freed
object

Object
carefully
selected

syscall_M(…)

Heap sp
ray

Challenge 3: Needs Security Expertise
• Find proper approaches to accomplish

arbitrary code execution or privilege
escalation or memory leakage
• E.g., chaining ROP
• E.g., crafting shellcode
• …

11/1/18 Email: xxing@ist.psu.edu 7

kernel panic

1. Use control over program
counter (rip) to perform
arbitrary code execution

2. Use the ability to write
arbitrary content to arbitrary
address to escalate
privilege

3. …

Some Past Research Potentially Tackling the Challenges

• Approaches for Challenge 1
• Nothing I am aware of, but simply extending KASAN could potentially solve this problem

• Approaches for Challenge 2
• [Blackhat07] [CCS16] [USENIX-SEC18]

• Approaches for Challenge 3
• [NDSS’11] [S&P16], [S&P17]

11/1/18 Email: xxing@ist.psu.edu 8

[NDSS11] Avgerinos et al., AEG: Automatic Exploit Generation.
[CCS16] Xu et al., Unleashing Use-After-Free Vulnerabilities in Linux Kernel.
[S&P16] Shoshitaishvili et al., Sok:(state of) the art of war: Offensive techniques in binary analysis.
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for Exploitation.
[S&P17] Bao et al., Your Exploit is Mine: Automatic Shellcode Transplant for Remote Exploits.
[Blackhat07] Sotirov, Heap Feng Shui in JavaScript

11/1/18 Email: xxing@ist.psu.edu 9

Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

11/1/18 Email: xxing@ist.psu.edu 10

A Real-World Example (CVE 2017-15649)

11/1/18 Email: xxing@ist.psu.edu 11

next
prev

next
prev

Head node

next
prev

setsockopt(…)
insert a node

A Real-World Example (CVE 2017-15649)

11/1/18 Email: xxing@ist.psu.edu 12

dangling ptr

next
prev

next
prev

next
prev

close(…) free node but not
completely removed from the list

Head node

Challenge 4: No Primitive Needed for Exploitation

11/1/18 Email: xxing@ist.psu.edu 13

next
prev

next
prev

next

Node newly
crafted

dangling ptr

Head node

next
prev

Obtain an ability to write
unmanageable data to

unmanageable address

prevprev

No Useful Primitive == Unexploitable??

11/1/18 Email: xxing@ist.psu.edu 14

sendmsg(…)

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

Obtain the primitive – write
unmanageable data to
unmanageable region

Obtain the primitive – hijack
control flow (control over rip)

Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

11/1/18 Email: xxing@ist.psu.edu 15

FUZE – Extracting Critical Info.
• Identifying the site of dangling pointer

occurrence, and that of its dereference;
pinpointing the corresponding system calls

11/1/18 Email: xxing@ist.psu.edu 16

sys
cal

l_A

sys
cal

l_MUser space
Kernel space sys

cal
l_B

syscall_B

syscall_A

Freed
object

FUZE – Performing Kernel Fuzzing
• Identifying the site of dangling pointer

occurrence, and that of its dereference;
pinpointing the corresponding system calls
• Performing kernel fuzzing between the two

sites and exploring other panic contexts
(i.e., different sites where the vulnerable
object is dereferenced)

11/1/18 Email: xxing@ist.psu.edu 17

sys
cal

l_A

sys
cal

l_MUser space
Kernel space sys

cal
l_B

syscall_B

syscall_A

syscall_Csyscall_Dsyscall_Esyscall_M

?

FUZE – Performing Symbolic Execution
• Identifying the site of dangling pointer

occurrence, and that of its dereference;
pinpointing the corresponding system calls
• Performing kernel fuzzing between the two

sites and exploring other panic contexts
(i.e., different sites where the vulnerable
object is dereferenced)
• Symbolically execute at the sites of the

dangling pointer dereference

11/1/18 Email: xxing@ist.psu.edu 18

?

?
?

?

?

sys
cal

l_A

sys
cal

l_MUser space
Kernel space sys

cal
l_B

syscall_B

syscall_Csyscall_Dsyscall_Esyscall_M

?
Freed
object Set symbolic value

for each byte

?

Useful Primitives for Control flow hijack
• Control flow hijack primitive
• call rax where rax = sym. val.

• Double Free
• Memory leak
• e.g. invocation of copy_to_user(…) with src

point to a freed object
• linked list corruption

11/1/18 Email: xxing@ist.psu.edu 19

?

?
?

?

?

sys
cal

l_A

sys
cal

l_MUser space
Kernel space sys

cal
l_B

?

?

Useful Primitives for Write-what-where
• E.g., mov qword ptr [rdi], rsi

11/1/18 Email: xxing@ist.psu.edu 20

?

?
?

?

?

sys
cal

l_A

sys
cal

l_MUser space
Kernel space sys

cal
l_B

?

rdi (dst) rsi (src) primitive

symbolic symbolic arbitrary write (qword shoot)
symbolic concrete write fixed value to arbitrary address
free chunk any write to freed object
x(concrete) x(concrete) self-reference structure
metadata of
freed chunk

any meta-data corruption

Useful Primitives != Ability to Perform Exploitation

11/1/18 Email: xxing@ist.psu.edu 21

SMEP

SMAP

CFI

KPTI

Hypervisor

read-only credentials

read-only vdso read-only vsyscall

heap metadata hardening

KASLR

Exploitable Machine States

• A machine state with the ability to bypass SMEP
• Control over rip which could redirect execution to pivot gadget -- xchg eax, esp
• E.g., mov rax, qword ptr[evil_ptr]; call rax

• A machine state with the ability to bypass SMAP/SMEP
• Control over rip which could redirect execution to native_write_cr4(...)
• Also, control over rdi, rsi and rax

11/1/18 Email: xxing@ist.psu.edu 22

Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

11/1/18 Email: xxing@ist.psu.edu 23

Evaluation

11/1/18 Email: xxing@ist.psu.edu 24

• 15 real-world UAF kernel
vulnerabilities
• Only 5 vulnerabilities have

demonstrated their exploitability
against SMEP
• Only 2 vulnerabilities have

demonstrated their exploitability
against SMAP

Evaluation (cont.)

11/1/18 Email: xxing@ist.psu.edu 25

• FUZE helps track down useful
primitives, giving us the power to
• Demonstrate exploitability against

SMEP for 10 vulnerabilities
• Demonstrate exploitability against

SMAP for 2 more vulnerabilities
• Diversify the approaches to performing

kernel exploitation
• 5 vs 19 (SMEP)
• 2 vs 5 (SMAP)

Discussion on Failure Cases
• Dangling pointer occurrence and its dereference tie to the same system call
• FUZE works for 64-bit OS but some vulnerabilities demonstrate its exploitability

only for 32-bit OS
• E.g., CVE-2015-3636

• Perhaps unexploitable!?
• CVE-2017-7374 ß null pointer dereference
• E.g., CVE-2013-7446, CVE-2017-15265 and CVE-2016-7117

11/1/18 Email: xxing@ist.psu.edu 26

Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

11/1/18 Email: xxing@ist.psu.edu 27

Conclusion
• Primitive identification and security mitigation circumvention can greatly

influence exploitability
• Existing exploitation research fails to provide facilitation to tackle these two

challenges
• Fuzzing + symbolic execution has a great potential toward tackling these

challenges
• Research on exploit automation is just the beginning of the GAME! Still many

more challenges waiting for us to tackle…

11/1/18 Email: xxing@ist.psu.edu 28

