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Background
• All software contain bugs, and # of bugs grows with the increase of software complexity

• E.g., Syzkaller/Syzbot reports 800+ Linux kernel bugs in 8 months
• Due to the lack of manpower, it is very rare that a software development team could 

patch all the bugs timely
• E.g., A Linux kernel bug could be patched in a single day or more than 8 months; on average, it 

takes 42 days to fix one kernel bug

• The best strategy for software development team is to prioritize their remediation efforts 
for bug fix 
• E.g. based on  its influence upon usability
• E.g., based on its influence upon software security
• E.g., based on the types of the bugs
• … …
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Background (cont.)
• Most common strategy is to fix a bug based on its exploitability
• To determine the exploitability of a bug, analysts generally have to write a 

working exploit, which needs
1) Significant manual efforts 
2) Sufficient security expertise
3) Extensive experience in target software
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Crafting an Exploit for Kernel Use-After-Free
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Challenge 1: Needs Intensive Manual Efforts
• Analyze the kernel panic
• Manually track down

1. The site of dangling pointer 
occurrence and the corresponding 
system call

2. The site of dangling pointer 
dereference  and the corresponding 
system call
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Challenge 2: Needs Extensive Expertise in Kernel
• Identify all the candidate objects that 

can be sprayed to the region of the 
freed object
• Pinpoint the proper system calls that 

allow an analyst to perform heap spray
• Figure out the proper arguments and 

context for the system call to allocate 
the candidate objects
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Challenge 3: Needs Security Expertise
• Find proper approaches to accomplish 

arbitrary code execution or privilege 
escalation or memory leakage
• E.g., chaining ROP
• E.g., crafting shellcode
• …
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Some Past Research Potentially Tackling the Challenges

• Approaches for Challenge 1
• Nothing I am aware of, but simply extending KASAN could potentially solve this problem 

• Approaches for Challenge 2
• [Blackhat07] [CCS16] [USENIX-SEC18] 

• Approaches for Challenge 3
• [NDSS’11] [S&P16], [S&P17]

11/1/18 Email: xxing@ist.psu.edu 8

[NDSS11] Avgerinos et al., AEG: Automatic Exploit Generation.
[CCS16] Xu et al., Unleashing Use-After-Free Vulnerabilities in Linux Kernel.
[S&P16] Shoshitaishvili et al., Sok:(state of) the art of war: Offensive techniques in binary analysis.
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for Exploitation.
[S&P17] Bao et al., Your Exploit is Mine: Automatic Shellcode Transplant for Remote Exploits.
[Blackhat07] Sotirov, Heap Feng Shui in JavaScript
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Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion
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A Real-World Example (CVE 2017-15649)
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A Real-World Example (CVE 2017-15649)
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Challenge 4: No Primitive Needed for Exploitation
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No Useful Primitive == Unexploitable??
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Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion
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FUZE – Extracting Critical Info.
• Identifying the site of dangling pointer 

occurrence, and that of its dereference; 
pinpointing the corresponding system calls
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FUZE – Performing Kernel Fuzzing
• Identifying the site of dangling pointer 

occurrence, and that of its dereference; 
pinpointing the corresponding system calls
• Performing kernel fuzzing between the two 

sites and exploring other panic contexts 
(i.e., different sites where the vulnerable 
object is dereferenced)
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?

FUZE – Performing Symbolic Execution
• Identifying the site of dangling pointer 

occurrence, and that of its dereference; 
pinpointing the corresponding system calls
• Performing kernel fuzzing between the two 

sites and exploring other panic contexts 
(i.e., different sites where the vulnerable 
object is dereferenced)
• Symbolically execute at the sites of the 

dangling pointer dereference
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?

Useful Primitives for Control flow hijack
• Control flow hijack primitive 
• call rax where rax = sym. val.

• Double Free
• Memory leak
• e.g. invocation of copy_to_user(…) with src

point to a freed object
• linked list corruption
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?

Useful Primitives for Write-what-where
• E.g., mov qword ptr [rdi], rsi
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Useful Primitives != Ability to Perform Exploitation
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Exploitable Machine States

• A machine state with the ability to bypass SMEP
• Control over rip which could redirect execution to pivot gadget -- xchg eax, esp
• E.g., mov rax, qword ptr[evil_ptr]; call rax

• A machine state with the ability to bypass SMAP/SMEP
• Control over rip which could redirect execution to native_write_cr4(...) 
• Also, control over rdi, rsi and rax
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Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion
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Evaluation
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• 15 real-world UAF kernel 
vulnerabilities
• Only 5 vulnerabilities have 

demonstrated their exploitability 
against SMEP
• Only 2 vulnerabilities have 

demonstrated their exploitability 
against SMAP



Evaluation (cont.)
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• FUZE helps track down useful 
primitives, giving us the power to
• Demonstrate exploitability against 

SMEP for  10 vulnerabilities 
• Demonstrate exploitability against 

SMAP for 2 more vulnerabilities
• Diversify the approaches to performing 

kernel exploitation 
• 5 vs 19 (SMEP)
• 2 vs 5 (SMAP)



Discussion on Failure Cases
• Dangling pointer occurrence and its dereference tie to the same system call
• FUZE works for 64-bit OS but some vulnerabilities demonstrate its exploitability 

only for 32-bit OS
• E.g., CVE-2015-3636

• Perhaps unexploitable!?
• CVE-2017-7374 ß null pointer dereference
• E.g., CVE-2013-7446, CVE-2017-15265 and CVE-2016-7117
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Roadmap
• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion
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Conclusion
• Primitive identification and security mitigation circumvention can greatly 

influence exploitability
• Existing exploitation research fails to provide facilitation to tackle these two 

challenges
• Fuzzing + symbolic execution has a great potential toward tackling these 

challenges
• Research on exploit automation is just the beginning of the GAME! Still many 

more challenges waiting for us to tackle…
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