
Digging Deep: Finding 0days in Embedded Systems
with Code Coverage Guided Fuzzing

NGUYEN Anh Quynh <aquynh -at- gmail.com>
Kai Jern LAU <xwings -at- hitb.org>

HackInTheBox - Beijing, November 2nd, 2018

1 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

About us - NGUYEN Anh Quynh

NGUYEN Anh Quynh, aquynh -at- gmail.com
I Nanyang Technological University, Singapore
I PhD in Computer Science
I Operating System, Virtual Machine, Binary analysis, etc
I Usenix, ACM, IEEE, LNCS, etc
I Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox, Syscan, etc
I Capstone disassembler: http://capstone-engine.org
I Unicorn emulator: http://unicorn-engine.org
I Keystone assembler: http://keystone-engine.org

2 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

http://capstone-engine.org
http://unicorn-engine.org
http://keystone-engine.org

About us - Kai Jern ’xwings’ LAU

Kai Jern ’xwings’ LAU, xwings -at- hitb.org
I The Shepherd Lab, JD.com
I IoT research, Blockchain research
I HackInTheBox, CodeGate, VXRL, QCon, KCon, DC852, DC010,

beVX, Brucon, H2HC, etc
I Founder of Hackersbadge.com, RE & CTF fan
I HackInTheBox crew & Review Board

3 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Agenda

1 Coverage Guided Fuzzer vs Embedded Systems

2 Emulating Firmware

3 Skorpio Dynamic Binary Instrumentation

4 Guided Fuzzer for Embedded

5 Demos

6 Conclusions

4 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Guided Fuzzer vs Embedded Systems

5 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzzing

Automated software testing technique to find bugs
I Feed craft input data to the program under test
I Monitor for errors like crash/hang/memory leaking
I Focus more on exploitable errors like memory corruption, info leaking

Maximize code coverage to find bugs
Blackbox fuzzing
Whitebox fuzzing
Graybox fuzzing, or Coverage Guided Fuzzing

6 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Coverage-guided fuzzer

Instrument target binary to collect coverage info
Mutate the input to maximize the coverage
Repeat above steps to find bugs

I Proved to be very effective
F Easier to use/setup & found a lot of bugs

I Trending in fuzzing technology
F American Fuzzy Lop (AFL) really changed the game

7 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Guided fuzzer for Embedded

Guided fuzzer was introduced for powerful PC systems
Bring over to embedded world?

I Restricted system
I Binary only (no source code)
I Lack support for embedded hardware

8 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Emulating Firmware

9 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Emulating firmware for fuzzing

Extract firmware of the target device
Extract the target binary from firmware
Run the target binary on Virtual machine on QEMU

I Fix missing dependency (standard system binary, SO files, etc)
I Emulate wireless device
I Emulate NVRAM

10 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Skorpio Dynamic Binary Instrumentation

11 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Dynamic Binary Instrumentation (DBI)

Definition
A method of analyzing a binary application at runtime through
injection of instrumentation code.

I Extra code executed as a part of original instruction stream
I No change to the original behavior

Framework to build apps on top of it

Applications
Code tracing/logging
Debugging
Profiling
Security enhancement/mitigation

12 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

DBI illustration

13 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

DBI techniques

Just-in-Time translation
I Transparently translate & execute code at runtime

F Perform on IR: Valgrind
F Perform directly on native code: DynamoRio

I Better control on code executed
I Heavy, super complicated in design & implementation

Hooking
I Lightweight, much simpler to design & implement
I Less control on code executed & need to know in advance where to

instrument

14 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Hooking mechanisms - Inline

Inline code injection
I Put instrumented code inline with original code
I Can instrument anywhere & unlimited in extra code injected
I Require complicated code rewrite

15 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Hooking mechanisms - Detour
Detour injection

I Branch to external instrumentation code
F User-defined CALLBACK as instrumented code
F TRAMPOLINE memory as a step-stone buffer

I Limited on where to hook
F Basic block too small?

I Easier to design & implement

16 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Detour injection mechanisms
Branch from original instruction to instrumented code
Branch to trampoline, or directly to callback

I Jump-trampoline technique
I Jump-callback technique
I Call-trampoline technique
I Call-callback technique

17 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Jump-trampoline technique

18 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Jump-callback technique

19 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Call-trampoline technique

20 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Call-callback technique

21 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Problems of existing DBI

Limited on platform support
Limited on architecture support
Limited on instrumentation techniques
Limited on optimization

22 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

SKORPIO framework

Low level framework to build applications on top
I App typically designed as dynamic libraries (DLL/SO/DYLIB)

Cross-platform-architecture
I Windows, MacOS, Linux, BSD, etc
I X86, Arm, Arm64, Mips, Sparc, PowerPC

Allow all kind of instrumentations
I Arbitrary address, in any privilege level

Designed to be easy to use, but support all kind of optimization
I Super fast (100x) compared to other frameworks, with proper setup

Support static instrumentation, too!

23 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

SKORPIO architecture

24 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross platform - Memory

Thin layer to abstract away platform details
Different OS supported in separate plugin

I Posix vs Windows
Trampoline buffer

I Allocate memory: malloc() vs VirtualAlloc()
I Memory privilege RWX: mprotect() vs VirtualAlloc()
I Trampoline buffer as close as possible to code to reduce branch

distance
Patch code in memory

I Unprotect -> Patch -> Re-protect
I mprotect() vs VirtualProtect()

25 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Save/Restore context

Save memory/registers modified by initial branch & callback
Keep the code size as small as possible
Depend on architecture + mode

I X86-32: PUSHAD; PUSHFD & POPFD; POPAD
I X86-64 & other CPUs: no simple instruction to save all registers :-(

F Calling convention: cdecl, optlink, pascal, stdcall, fastcall, safecall,
thiscall, vectorcall, Borland, Watcom

F SystemV ABI vs Windows ABI

Special API to customize code to save/restore context

26 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Callback argument

Pass user argument to user-defined callback
Depend on architecture + mode & calling convention

I SysV/Windows x86-32 vs x86-64
F Windows: cdecl, optlink, pascal, stdcall, fastcall, safecall, thiscall,

vectorcall, Borland, Watcom
I X86-64: "mov rcx, <value>" or "mov rdi, <value>. Encoding

depends on data value
I Arm: "ldr r0, [pc, 0]; b .+8; <4-byte-value>"
I Arm64: "movz x0, <lo16>; movk x0, <hi16>, lsl 16"
I Mips: "li $a0, <value>"
I PPC: "lis %r3, <hi16>; ori %r3, %r3, <lo16>"

27 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Branch distance

Distance from hooking place to callback cause nightmare :-(
I Some architectures have no explicit support for far branching

F X86-64 JUMP: "push <addr>; ret" or "push 0; mov dword ptr
[rsp+4], <addr>" or "jmp [rip]"

F X86-64 CALL: "push <next-addr>; push <target>; ret"
F Arm JUMP: "b <addr>" or "ldr pc, [pc, #-4]"
F Arm CALL: "bl <addr>" or "add lr, pc, #4; ldr pc, [pc, #-4]"
F Arm64 JUMP: "b <addr>" or "ldr x16, .+8; br x16"
F Arm64 CALL: "bl <addr>" or "ldr x16, .+12; blr x16; b .+12"
F Mips JUMP: "li $t0, <addr>; jr $t0"
F Mips CALL: "li $t0, <addr>; move $t9, $t0; jalr $t0"
F Sparc JUMP: "set <addr>, %l4; jmp %l4; nop"
F Sparc CALL: "set <addr>, %l4; call %l4; nop"

28 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Branch for PPC
PPC has no far jump instruction :-(

I copy LR to r23, save target address to r24, then copy to LR for BLR
I restore LR from r23 after jumping back from trampoline
I "mflr %r23; lis %r24, <hi16>; ori %r24, %r24, <lo16>; mtlr %r24;

blr"
PPC has no far call instruction :-(

I save r24 with target address, then copy r24 to LR
I point r24 to instruction after BLR, so later BLR go back there from

callback
I "lis %r24, <target-hi16>; ori %r24, %r24, <target-lo16>; mtlr %r24;

lis %r24, <ret-hi16>; ori %r24, %r24, <ret-lo16>; blr"

29 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Scratch register

Scratch registers used in initial branching
I Arm64, Mips, Sparc & PPC do not allow branch to indirect target in

memory
I Calculate branch target, or used as branch target
I Need scratch register(s) that are unused in local context

F Specified by user via API, or discovered automatically by engine

30 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Cross architecture - Flush code cache

Code patching need to be reflected in i-cache
Depend on architecture

I X86: no need
I Arm, Arm64, Mips, PowrPC, Sparc: special syscalls/instructions to

flush/invalidate i-cache
I Linux/GCC has special function: cacheflush(begin, end)

31 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Code boudary & relocation
Need to extract instructions overwritten at instrumentation point

I Determine instruction boundary for X86
I Use Capstone disassembler

Need to rewrite instructions to work at relocated place (trampoline)
I Relative instructions (branch, memory access)
I Use Capstone disassembler to detect instruction type
I Use Keystone assembler to recompile

32 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Code analysis

Avoid overflow to next basic block
I Analysis to detect if basic block is too small for patching

Reduce number of registers saved before callback
Registers to be choosen as scratch registers

33 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Customize on instrumentation

API to setup calling convention
User-defined callback
User-defined trampoline
User-defined scratch registers
User-defined save-restore context
User-defined code to setup callback ars
Patch hooks in batch, or individual
User decide when to write/unwrite memory protect

34 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Guided Fuzzer for Embedded

35 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzzer Features

Coverage guided Fuzzer
Support closed-source binary for all platforms & architectures

I Use Skorpio DBI to support all popular embedded CPUs

Support selective binary fuzzing
Support persistent mode
Other enhanced techniques

I Symbolic Execution to guide fuzzer forward
I Combine with static binary analysis for smarter/deeper penetration

36 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzzer Design

Pure software-based
Cross-platform/architecture

I Native compiled on embedded systems
Binary support

I Full & selected binary fuzzing + Persistent mode
Fast & stable

I Stable & support all kind of binaries
I Order of magnitude faster than DBI/Emulation approaches

37 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzzer Implementation

Reuse AFL fuzzer - without changing its core design
AFL-compatible instrumentation
Static analysis on target binary beforehand
Inject Skorpio hooks into selected area in target binary at runtime
At runtime, hook callbacks update execution context in shared
memory, like how source-code based instrumentation do
Near native execution speed, ASLR / threading compatible

38 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzzer Instrumentation

LD_PRELOAD to dynamically inject instrumentation
I Take place before main program runs
I Linux: shared object file (.so)

Inject hooks at SO initialisation time
I Can be 100k hooks, so must do as quickly as possible

Inject forkserver at program entry-point, or at user-defined point

39 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Detect Memory Corruption

Built-in memory debugging for better control & performance
I Overload malloc(), free() & co
I Utilize MMU to detect overflow/underflow bugs (like Off-by-1)
I Use-after-free bug

40 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Fuzz Network Process

Run server as fuzzing target
I Instrument only the code handling input from client
I Instrument at the finish location to put server in sleep mode, to tell

AFL that input handling is done (succesfully)
I Depending on waitpid status to judge the result: sleep or crash/timeout

Implement client inside the forkserver loop
I Initialize client socket
I Connect to server to send mutation input (from AFL)
I Disconnect after sending data

41 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Demos

42 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Conclusions

We built our smart guided fuzzer for embedded systems
I Emulate firmware
I Cross platforms/architectures
I Binary-only support
I Fast + stable
I Found real impactful bugs in complicated software

43 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

Questions & answers
Digging Deep: Finding 0days in Embedded Systems

with Code Coverage Guided Fuzzing

NGUYEN Anh Quynh <aquynh -at- gmail.com>

Kai Jern LAU <xwings -at- hitb.org>

44 / 44 NGUYEN Anh Quynh, Kai Jern LAU Digging Deep: Finding 0days in Embedded Systems with Code Coverage Guided Fuzzing

	Coverage Guided Fuzzer vs Embedded Systems
	Emulating Firmware
	Skorpio Dynamic Binary Instrumentation
	Guided Fuzzer for Embedded
	Demos
	Conclusions

