Wireless Hacking with HackCUBE& HackCUBE-Special

Jie Fu KunZhe Chai
From PegasusTeam
Brief introduction of HackCUBE
防御

抵御无线射频攻击
根据频谱仪溯源恶意干扰源
有效防御汽车中继攻击
可阻断未知射频信号
Two specific attack cases

Fixed-code brute force attack to parking bar

Attack to Entrance guard system
Example 1:
Fixed-code brute force attack to parking bar
Resources of HackCUBE for attacking Sub-1Ghz & 2.4GHz:

- CC1101-433Mhz
- CC1101-315Mhz
- NRF24L01
Sub-1GHz radio usage in our daily life
2.4GHz Radio usage in our daily life
Basic knowledge of Remote Keyless Entry

1. Fixed code remote control
 - Send same data every time
 - Data is not encrypted
 - Widely used in Safety Guard System
 - Smart Home System

2. Rolling code remote control
 - Send rolling data
 - Data is encrypted
 - Widely used in Automobile entrance guard system

If you are interested in the Rolling code remote control, please refer to https://www.youtube.com/watch?v=p3SJp-7LSNs&t=2807s
Two types of Fixed code remote control

1. Changeless coding
 address is fixed by the Semiconductor manufacturer

2. Changeable coding
 can change address by soldering to 3 different states
How to attack the parking bar?

In fact, the parking bar system is a fixed-code remote control.

Method 1:
Sniff the signal when the guard control the parking bar, then replay it using the HackCUBE or any other SDR tools.

Method 2:
Reverse analysis signal, then forge all the data.
How to find the operating frequency?
The frequency is 315MHz
Analyzing the signal--Changeless coding

The original signal

The signal can be divided into 4 parts

Preamble: used by receiver to sync with the transmitter
Address: Identification code
Data: function code
Stop: stop bit
Decoding the signal--Changeless coding

The original signal

Coding format

Decoded data
Analyzing the signal--Changeable coding

The original signal

The signal can be divided into 4 parts:

Preamble: used by receiver to sync with the transmitter

Address: Identification code

Data: function code

Stop: stop bit It is same as the changeless code.
Decoding the signal--Changeable cod

Coding format

Decoded data
Changeable coding VS changeless coding

Changeable coding
1. 8 bit address & 3 states
total numbers $3^8=6551$
2. It take about 10 minute to carry out brute force attack

Changeless coding
1. 20 bit address & 2 states
total numbers $2^{20}=1048576$
2. It is not easy to carry out brute force attack
Get your hands dirty;

Following the steps
Step1: Plug the MicroUSB to power the HackCUBE
Step2: Power the LEGO-based parking bar model
Step3: Connect to the AP of the HackCUBE
 SSID: HackCUBE_xx:xx:xx (MAC address)
 key: hackcube123
Step 4: open the browser, enter 192.168.2.3
Step5: select the RF tab
Step6: click the attack in bottom of this web
Example 2: attacking RFID
transceiver module for contactless communication at 13.56 MHz, 6 different operating modes:
1. ISO/IEC 14443A/MIFARE® Reader/Writer
2. FeliCa Reader/Writer
3. ISO/IEC 14443B Reader/Writer
4. ISO/IEC 14443A/MIFARE Card MIFARE Classic® 1K or MIFARE Classic 4K card emulation mode
5. FeliCa Card emulation
6. ISO/IEC 18092, ECMA 340 Peer-to-Peer Read/Write analog front end for 125kHz RFID

Multiple transponder protocol compatibility (Ex: EM4102, EM4200, EM4450 and EM4205/EM4305)
RFID usage in our daily life
What can we do with the HackCUBE?

1. Read the 125KHz ID tag

2. Write to T5577 card with any card number from the stored card data or the inputted data

3. Emulate as cards with any card number from the stored card data or the inputted data

......

Any function you want to add which works at 125KHz
Read ID(125KHz) tag

Signal of the reader without any tag

Put a tag close to the reader
Analyzing the signal

The original signal

The signal can be divided into 3 parts

Preamble: Consist of 9 bit1

Data: data + parity check

Stop: always bit0
Encoding format

1 0 1 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0

NRZ decode

01010101010101011010100100101101010101010101010101010100101
101
10100110010
10

MANCHESTER decode
Preamble: sync (9 bit1)

VD: vendor identity (8 bit)

ID: identity (32 bit)

R: row parity check (number of bit1 & 0x01)

L: column parity check (number of bit1 & 0x01)

S: stop (bit0)
Get the tag number

Extract the VD & ID:
00000110
00000000
01101011
01000001
01110100
Tag: 06 00 6B 41 74
Emulate as ID(125KHz) tag

The protocol is similar to reading card
Just control the EM4095 chip as this protocol

Warning : this emulation is a active emission, not similar to the real tag. It probably can’t be recognized by the reader.
Write ID(125KHz) tag

When we write to a writable tag, the captured signal is as the right picture
Details of the signal

Data 1

Data 2

Data 3

Data 4

Data 5
Decoding the signal

The wide signal is bit1, and the narrow signal is bit0. The 5 data can be decoded as follow:

Data 1: 100 00100110 01001100 10111001 11100000 00000000 00010100 10000000 01000000 000
Data 2: 100 00000000 00000000 00000000 00000000 111
Data 3: 100 00000000 00101000 10000000 01000000 000
Data 4: 100 11111111 10000010 11101001 10010100 001
Data 5: 100 10011000 00000010 11101100 10101000 010

The first 3 bits is the preamble
The last 3 bits is the writing address
The function of each signal

1. The first data is written to block 0, 0x264CB9E0 0x00148040, this is the configuration

2. The second data(0x00000000) is the password of the tag, which is written to block 7

3. The third data(0x00148040) is also the configuration of the tag

4. The forth and fifth data is the data, which we want to written to the tag. The written address of the tag is block 1 and block 2
The data written to block 1 and block 2

Data 4 : 100 11111111 10000010 11101001 10010100 001

Data 5 : 100 10011000 00000010 11101100 10101000 010

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>5 bit preamble</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

8 bit vendor identity

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

32 bit data

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

4 bit column parity check

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

After written the tag is
0x 0b 49 96 02 d2
Get your hands dirty;

Following the steps
Step1: Plug the MicroUSB to power the HackCUBE-Special
Step2: Connect to the AP of the HackCUBE-Special
 SSID: HackCUBE_xx:xx:xx (MAC address)
 key: hackcube
Step3: open the browser, enter 192.168.5.1
Step4: select the NFC tab
Step5: put the tag close to the antenna of NFC
 (opposite of the Logo)

Then you can find the reading tag on the web.
Warning
This equipment shall be only used for penetration testing of non-real systems. Please use it in accordance with local laws and regulations.

HackCUBE-Special LF
RFID Low Frequency System (125KHz, EM41XX & T5577) Risk Evaluation

Read ID
VID ID Simulate

Emulate ID (Test)
VID ID

Write ID
VID ID

Brute Attack (Test)
VID Start ID End ID

HackCUBE-Special HID
Human Interface Device Risk Evaluation

Load Script
Key

List Script
<table>
<thead>
<tr>
<th>info</th>
<th>name</th>
<th>run</th>
</tr>
</thead>
<tbody>
<tr>
<td>29d172a6</td>
<td>lock</td>
<td>execute</td>
</tr>
<tr>
<td>d2f392f1</td>
<td>cmatrix</td>
<td>execute</td>
</tr>
<tr>
<td>9209993f</td>
<td>Shellcode</td>
<td>execute</td>
</tr>
</tbody>
</table>
Warning
This equipment shall be only used for penetration testing of non-real systems. Please use it in accordance with local laws and regulations.

HackCUBE-Special RF
Wireless System
(2.4Ghz,315Mhz&433Mhz&868/915Mhz) Risk Evaluation

Sniffer Data
Freq Pac Modu Func Data Play

Transmit Data
Freq Protocol
315Mhz PT226X

Transmit Brute
Freq Protocol
315Mhz PT226X
Start End Func
Start address Stop address Func

NFC Power RF Power

Frequency Setting Protocol
315000000

Lighting Effects

Lighting Colours

Lighting Brightness
128

Settings Update
低频安全
门禁卡数据读取
Any questions?

zhujiu1234@gmail.com

Thank you~