
Compiler Bugs
and

Bug Compilers

Disclaimer
The opinions and positions expressed herein are mine only
and do not represent the views of any current or previous
employer, including Intel Corporation or its affiliates.

This presentation has no intention to advertise or devalue any
current or future technology.

No database software was harmed in the making of this
presentation.

Hello, it’s me!

Marion Marschalek

Security Researcher with Intel STORM Team

@pinkflawd | marion@0x1338.at

It is really hard to do something useful
inside of a modern day compiler.

Every explanation anyone has ever done on
GCC things starts with this graphic.

I mean, almost?

GCC’s Compiler Passes

GCC’s compilation process is
organized in passes

Neat explanatory graphic
by David Malcolm

GENERIC vs. GIMPLE vs. SSA vs.
RTL vs. machine definition vs. ASM

https://gcc-python-plugin.readthedocs.io/en/latest/tables-of-passes.html

The Debug Output

… looks a bit like a “Matrix” screensaver when you
scroll down fast

-fdump-passes

-fdump-tree-all, -fdump-ipa-all, -fdump-rtl-all

-fdump-tree-cfg-all

-fdump-rtl-MYAWESOMEPASS

GCC Plugins
Since GCC 4.5 we can plug passes into the compilation process!

Benefits of plugins vs. modifying GCC itself?

₋ Plugins are shared objects, loaded by GCC as dedicated passes

₋ Maintained by pass manager

₋ Dependent on compiler version

₋ GCC plugin API defined in tree-pass.h

₋ GENERIC, Gimple, RTL

https://lwn.net/Articles/457543/

People think assembly is complicated
[...]
(insn 5 2 6 2

(set (reg:DI 5 di)
(symbol_ref/f:DI ("*.LC0") [flags 0x2] <var_decl 0x7fd4f1a1ecf0 *.LC0>))

"helloworld.c":4 -1
(nil))

(call_insn 6 5 7 2 (set (reg:SI 0 ax)
(call (mem:QI (symbol_ref:DI ("puts") [flags 0x41]

<function_decl 0x7fd4f1974600 __builtin_puts>) [0 __builtin_puts S1 A8])
(const_int 0 [0]))) "helloworld.c":4 -1

(nil)
(expr_list:DI (use (reg:DI 5 di))

(nil)))
[...]

Prior research makes life a LOT easier
Emese Revfy https://github.com/ephox-gcc-plugins

Matt Davis https://github.com/enferex/

PaX team: RAP and more https://github.com/rrbranco/grsecurity-pax-history/tree/master/pax
• H2HC 2012: https://pax.grsecurity.net/docs/PaXTeam-H2HC12-PaX-kernel-self-protection.pdf

• PaX Untold Story (which includes the explanation of the first plugins)

• H2HC 2013: https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
• PaX GCC Plugins

• H2HC 2015: https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
• RAP RIP ROP

KGuard https://github.com/pmoust/kguard

Roger Ferrer Ibanez https://github.com/rofirrim/gcc-plugins

https://github.com/ephox-gcc-plugins
https://github.com/enferex/
https://github.com/rrbranco/grsecurity-pax-history/tree/master/pax
https://pax.grsecurity.net/docs/PaXTeam-H2HC12-PaX-kernel-self-protection.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://github.com/pmoust/kguard
https://github.com/rofirrim/gcc-plugins

printf(“Hello world!\n”);

.. goes hail satan ..

The obvious stuff

Attackers would:

₋ change a buffer size

₋ remove a sanity check

₋ remove a whole patch

₋ remove authentication
checks

₋ add or remove entire
chunks of logic

Defenders would:

₋ review binaries

₋ diff

₋ fuzz

₋ guard their build environments like
grandma’s jewelry

₋ review their build scripts

Unpatching a bug

₋ SQLite fixed a bug last year that was reported by P0’ Natashenka

₋ Reading a database journal that misses ‘-’ in its filename could have
resulted in a negative size argument passed to memcpy

₋ Lets see if one can unfix that…

Small. Fast. Reliable.
Choose any three.

Dev’s favorite DB

unpatched patched

Creating a bug

Creating a bug

Creating a bug

. . .

. . .

. . .

Do’s & Dont’s

ELF things

https://www.cs.stevens.edu/~jschauma/631/elf.html

InitArray

default_elf_init_array_asm_out_constructor (
gen_rtx_SYMBOL_REF (Pmode, "pop_funclet"),
DEFAULT_INIT_PRIORITY);

fprintf, yes really!

strace –f gcc foo.c –o foo |& grep execve
 cc1 compiles C to ASM, others: cc1plus, jc1, f951,…
 as assembles ASM to bytecode
 collect2 wrapper for ld and prep work
 ld the GNU linker

PIC me a flower & Its GOT to PLT purrfect

Where will “call execl” go?

https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

call func@PLT

…

…

PLT[0]:

call resolver

…

PLT[n]:

jmp *GOT[n]

prepare resolver

jmp PLT[0]

…

GOT[n]:

<addr>

https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

So I got this needle, someone
pls gimme a haystack!

Reverse engineering a GCC
compiler plugin?

Modifying and recompiling GCC?

Binary code review?

Reproducible builds?

The less obvious stuff

(Tail)call me, maybe!
• Tail-call optimization or tail-call merging or tail-call elimination

• In a nutshell: Reusing stack frames (i.e. arguments) to eliminate calls

• In GCC speak: a /j flag

(call_insn/j:TI 19 40 20 4 (set (reg:SI 0 ax)
(call (mem:QI (symbol_ref:DI ("puts") [flags 0x41] <function_decl 0x7ffff6b32f00 __builtin_puts>) [0 __builtin_puts S1 A8])

(const_int 0 [0]))) "main.c":13 704 {*sibcall_value}
(expr_list:REG_DEAD (reg:DI 5 di)

(expr_list:REG_UNUSED (reg:SI 0 ax)
(expr_list:REG_CALL_DECL (symbol_ref:DI ("puts") [flags 0x41] <function_decl 0x7ffff6b32f00 __builtin_puts>)

(nil))))
(expr_list:DI (use (reg:DI 5 di))

(nil)))

Compiler Explorer - https://godbolt.org/

What is it with those calls though?

https://godbolt.org/

Compiler Explorer - https://godbolt.org/

https://godbolt.org/

Lets optimize this..
The stack is the enemy!

The register allocator isn’t your friend either,

.. and the linker messes with you too

Again, no actual database software was harmed
in the making of this presentation.

TCO tries to fool the
openDatabase routine into
returning to the callers’
caller

By removing the /j flag said
fooling fails, and we sneak
in an extra return

Builtins & Intrinsics
• GCC provides a large number of built-in functions, for internal use,

and for optimization purposes of standard C library functions
• __builtin_puts, __builtin_alloca, __builtin_memcpy, etc. etc. etc.

• GCC intrinsics are built-in functions that help the developer use
domain specific operations, and help the compiler leverage machine
specific functionality

• Vector operations, signal processing, interrupt handling, etc. etc. etc.

What could be optimized here?

Magic?

How does that work?

builtins.def

builtins.h

builtins.c

xxx-builtin.def

xxxintrin.h

.. and many many more..

Lazy Optimization Watching - Like bird watching, with grep

-O0 -O3

Look ma, I made
memcpy faster!

Hijacking Fu
GCC’s location_t

Optimizers and linker to be taken into consideration

Real intrusion must be VERY well designed

How to follow intrinsic expansion?
• 2 passes:

• early “spy” pass locating copy operation indicated by certain size value and picking config
out of the data

• “execution” pass adding extra insn with config as address or relative offset to writeable
section

• patch all the things yeehahhh, just almost

What to DO about this?

Any… QUESTIONS?!

