
>Attacking encrypted VoIP protocols

HAXPO Amsterdam, May 2019 Ivica Stipovic

Biography

1. Name>Ivica [Eeveetsa] Stipovic
2. Work>Ward Solutions, Dublin, Ireland
3. Job>Information Security Consultant
4. Contact> Ivica.Stipovic@ward.ie
5. >EOF

mailto:Ivica.Stipovic@ward.ie

What is VoIP protocol ?

• VOIP stands for (Voice Over IP) - Voice /Video/messaging that uses IP-based
transport protocols for transmission

• What is SIP?
SIP stands for Session Initiation Protocol (it is a voice control
protocol), developed by IETF

• SIP is one of the predominant VOIP control protocols

Source: https://en.wikipedia.org/wiki/Session_Initiation_Protocol

SIP,MGCP,H.323,XMPP…

There are other VoIP protocols as well

• MGCP Media Gateway Control Protocol (MGCP), connection management for
media gateways

• H.323 - one of the first VoIP call signaling and control protocols that found
widespread implementation

• XMPP - Extensible Messaging and Presence Protocol , instant messaging,
presence information, and contact list maintenance

• Skype protocol, proprietary Internet telephony protocol suite based on peer-
to-peer architecture

…etc

What applications are using VoIP?

This is a small snapshot of the most popular VoIP applications.

Not all of them use SIP, though:
Skype uses proprietary protocol

Viber does use SIP, so as Blink,
Cisco IP Communication, Jitsi,
Bria, Empathy,Linphone,X-Lite,
Zoiper,Yahoo! Messenger…

Let’s talk about SIP

• SIP by default runs as a UDP service over the port 5060
• By default, it is not encrypted

• Full description of SIP protocol is given in the
https://tools.ietf.org/html/rfc3261

• SIP structure is very similar to HTTP session structure (both request and
response paradigm)

https://tools.ietf.org/html/rfc3261

Structure of a SIP session

Similar to HTTP

Request (REGISTER vs GET)

Response (Unathorised
Return code 401)

Request (REGISTER vs GET)

Attributes of a SIP session

We will focus on attributes required to facilitate password attacks. These are: algorithm,
method, username, realm, uri,response,nonce,{nc},{cnonce} and {qop}

Why TLS/encryption?

• wrapping SIP into TLS makes it more secure (HTTP vs HTTPS, POP3 vs POP3S, LDAP vs
LDAPS etc.)

• interception of encrypted SIP will show obfuscated application layer payload

• only ip/tcp/udp header level information intelligible

Why TLS/encryption?

-challenges to pentesters that TLS presents – we want the application layer

Lower OSI layers

Application layer
obfuscated

SIP –two aspects of attacks

1st aspect : interception + decryption
-for unencrypted SIP sessions, one focuses only on interception
-in our case, we need to do both

2nd aspect : SIP password cracking
-for unencrypted SIP sessions, off-the-shelf tools available in Kali
-in our case, we need to develop either:

-manual preparation of a file for sipcrack
-our own tool to streamline the cracking (<= chosen approach)

Attacking plaintext SIP passwords

-Kali with sipdump and sipcrack

-sipdump takes a pcap of a
SIP session as input and
generates a text file output
for sipcrack

-sipcrack takes the text output
from sipdump and performs
password dictionary attack

Solution design-1st part (interception and decryption)

An idea of MITM occurred as one plausible attack vector

This is what we need to achieve:

• build a mechanism capable of intercepting and decrypting the TLS wrapped session

• search for some kind of protocol-agnostic proxy capable of decrypting TLS

• forward the traffic from this protocol-agnostic proxy to Burp so we can play with
packets

Solution design-1st part (interception and decryption)

• Burpsuite does that job No. 1, but only for HTTP(S) – it does not speak SIP or any other
non-HTTP(S) protocols for that matter

• The Solution: mitm_relay.py (https://github.com/jrmdev/mitm_relay)

https://github.com/jrmdev/mitm_relay

Solution design-1st part (interception and decryption)

-Topology design developed as below

-Key component: mitm_relay.py + Burpsuite running as SIP proxy on Kali
- you can have them on separate VMs too, also , no particular need for Kali – any linux
will do, I guess

Chaining mitm_relay.py with Burp

-l 0.0.0.0 mitm_relay.py listens on all
interfaces

-p 127.0.0.1:8080 Burp runs on localhost ,
port 8080

-r tcp:5061:192.168.0.101:5061 relay all
traffic on tcp 5061 port to final SIP server
running on 192.168.0.101, port 5061

-c mitm.pem digital certificate for
mitm_relay.py

-k privatemitm.key private key for
mitm_relay.py

Chaining mitm_relay.py with Burp

• If we switch over to Burp, we can
see decrypted SIP negotiation

• POST requests have embedded
“/CLIENT_REQUEST/to/<IP>” and
“/SERVER_RESPONSE/from/<IP>”

• that allows Burp to process SIP
Sessions (it only transports stuff,
does not really speak SIP)

Chaining mitm_relay.py with Burp

• Mechanics of the interception
• SIP client ->mitm_relay.py->Burpsuite->SIP server->SIP client 2

• NOTE: remember that now that we have Burp reading the SIP, several other attacks
can be mounted :

-send SIP request to Burp Repeater,
-change call destinations,
-brute force destination numbers,
-change user agent fingerprint ,
-inject some funky headers/establish covert channel attack,
-spoof calling ID…

• Tampering in BURP is interesting, but out of scope of this research

Solution design - 2nd part (coding new app)

• Why is new app required –what about sipdump and sipcrack?
-sipdump will not work here –we have dumped the decrypted session
into a non-pcap format

-sipdump has no way of importing the private key to decrypt the
captured wireshark pcap session

-we can decrypt wireshark pcap, remember? – we possess the private
key for mitm_relay.py

• What is new app doing?
-new app will process the mitm_relay.py dump which is more-less text
based file and will extract all authentication attributes and perform
password dictionary-based attack

Solution design - 2nd part (coding new app)

• Functional mapping of sipdump+sipcrack into sipcrack2

• Streamline mitm_relay dump parsing with password cracking

• How do we crack digest algorithm?

-https://www.ietf.org/rfc/rfc2069.txt later ammended by RFC 2617

-{qop},{nc},{cnonce} increase the variability of hashing but will still not
protect against our attack and all these attributes can be intercepted and
decrypted

Solution design - 2nd part (coding new app)

• Digest authentication algorithm

• If {qop},{cnonce} and {nc} are not defined (RFC2069) then
H1=MD5(username:realm:password)
H2=MD5(method:uri)
Response=MD5 (H1:nonce:H2)

Else if {qop},{cnonce} and {nc } are defined (RFC2617) then

Response=MD5(H1:nonce:nc:cnonce:qop:H2)

https://github.com/adenosine-phosphatase/sipcrack2

https://github.com/adenosine-phosphatase/sipcrack2

Final thoughts

• Development
sipcrack2 is for now just a linux version, hope to release Windows version with
CUDA/multithreading & parallel processing in a near future

• How realistic/difficult is the attack?
The attack shown is relatively difficult to implement (ARP poisoning required to
redirect the traffic from legitimate proxy to the attacker)

• Recommendations
-use strong passwords
-do not use self-signed certificates
-use client side certificate in addition to server

• Risk rating proposed: Medium

Demo

Demov1.mp4

Questions?

Shutting down

