Implementation and evaluation of secure and scalable

anomaly-based network intrusion detection

Philipp Mieden, HITBAMS2019

$ whoami

2019: Bachelor of Science @Ludwig Maximilian University of Munich

Security & Backend Engineer @bestbytes
Next up: Security and Network Engineering Master @University of Amsterdam

Interests:

- Network Security Monitoring & Anomaly Detection

- Machine Learning
- Programming (Golang, C/ C++ / ObjC, Swift, Haskell, Python, Rust)

- Hardware & Software Security
- Reverse Engineering
- Penetration Testing

F.A.Q:

Are you moxies little brother? - Nope.

Are you a vegetarian or vegan? - Nope.

What's your favourite programming language? - Go.

NETCAP @ HITBAMS2019

Roadmap

- Introduction and problem formulation
- NETCAP overview

- Thesis experiments wrap up

- What's new

NETCAP @ HITBAMS2019

Let’s talk about a major problem
of the software industry.

Memory Safety.

Memory safety issues remain dominant

We closely study the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

o /_/\

== ss s

(o))
3
S~

% of CVEs
v
o
a%

2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018

Patch Year

B Memory safety ® Not memory safety

~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues

Source: Slides from Matt Miller @ BlueHat Israel 2019

NETCAP @ HITBAMS2019

Memory corruption is an issue
on every platform.

Fish in a Barrel @LazyFishBarrel - 24. Apr.
21/21 vulnerabilities in Acrobat are memory unsafety
helpx.adobe.com/security/produ... #memoryunsafety

& Tweet (Ubersetzen

(R O 3 =

v Windows, Mac and Linux. This will roll out ove...

0 4 QO 8 &

Mitigations don’t help.

They increase the cost for attacks,
but do not address the root cause.

How does memory safety affect
network security monitoring?

MITRE CVE results for Bro (Zeek) IDS

There are 7 CVE entries that match your search.

Name Description
CVE-2018-17019 In Bro through 2.5.5, there is a DoS in IRC protocol names command parsing in analyzer/protocol/irc/IRC.cc.

CVE-2018-16807 Bro through 2.5.5, there is a memory leak potentially lead
parser.

CVE-2017-1000458 §Bro before Bro v2.5.2 is vulnerable to an out of bounds write in the ContentLine analyzer allowing remote attackers to cause a denial of
service (crash) and possibly other exploitation.

CVE-2015-1522 analyzer/protocol/dnp3/DNP3.cc in Bro before 2.3.2 does not reject certain non-zero values of a packet length, which allows remote
attackers to cause a denial of service (buffer overflow or buffer over-read) via a crafted DNP3 packet.

CVE-2015-1521 analyzer/protocol/dnp3/DNP3.cc in Bro before 2.3.2 does not properly handle zero values of a packet length, which allows remote
attackers to cause a denial of service (buffer overflow or buffer over-read if NDEBUG; otherwise assertion failure) via a crafted DNP3
packet.

CVE-2007-0186 Multiple cross-site scripting (XSS) vulnerabilities in F5 FirePass SSL VPN allow remote attackers to inject arbitrary web script or HTML via
(1) the xcho parameter to my.logon.php3; the (2) topblue, (3) midblue, (4) wtopblue, and certain other Custom color parameters in a per
action to vdesk/admincon/index.php; the (5) h321, (6) h311, (7) h312, and certain other Front Door custom text color parameters in a
per action to vdesk/admincon/index.php; the (8) ua parameter in a bro action to vdesk/admincon/index.php; the (9) app_param and (10)
app_name parameters to webyfiers.php; (11) double eval functions; (12) JavaScript contained in an <FP_DO_NOT_TOUCH> element;
and (13) the vhost parameter to my.activation.php. NOTE: it is possible that this candidate overlaps CVE-2006-3550.

CVE-2006-6256 Cross-site scripting (XSS) vulnerability in the file manager in admin/bro_main.php in AlternC 0.9.5 and earlier allows remote attackers to
inject arbitrary web script or HTML via a folder name.

NETCAP @ HITBAMS2019

MITRE CVE results for Suricata IDS

Search Results

There are 17 CVE entries that match your search.

Name Description

CVE-2018-6794 Suricata before 4.0.4 is prone to an HTTP detection bypass vulnerability in detect.c and stream-tcp.c. If a malicious server breaks a
normal TCP flow and sends data before the 3-way handshake is complete, then the data sent by the malicious server will be accepted by
web clients such as a web browser or Linux CLI utilities, but ignored by Suricata IDS signatures. This mostly affects IDS signatures for the
HTTP protocol and TCP stream content; signatures for TCP packets will inspect such network traffic as usual.

CVE-2018-18956

CVE-2018-14568 Suricata before 4.0.5 stops TCP stream inspection upon a TCP RST from a server. This allows detection bypass because Windows TCP
clients proceed with normal processing of TCP data that arrives shortly after an RST (i.e., they act as if the RST had not yet been
received).

CVE-2018-10244 / e parsing code to read

beyond the aIIocated data because DecodeENIPPDU in app-layer-enip-commmon.c has an integer overflow during

CVE-2018-10243 htp_parse_authorization_digest in htp_parsers.c in LibHTP 0.5.26 allows remote attackers to cause a heap-based buffer over-read via an
authorization digest header.

CVE-2018-10242 Suricata version 4.0.4 incorrectly handles the parsing of the SSH banner. A malformed SSH banner can cause the parsing code to read
beyond the allocated data because SSHParseBanner in app-layer-ssh.c lacks a length check.

CVE-2018-1000167 OISF suricata-update version 1.0.0al contains an Insecure Deserialization vulnerability in the insecure yaml.load-Function as used in the
following files: config.py:136, config.py:142, sources.py:99 and sources.py:131. The "list-sources"-command is affected by this bug. that
can result in Remote Code Execution(even as root if suricata-update is called by root). This attack appears to be exploitable via a specially
crafted yaml-file at https://www.openinfosecfoundation.org/rules/index.yaml. This vulnerability appears to have been fixed in 1.0.0b1.

CVE-2017-7177 Suricata before 3.2.1 has an IPv4 defragmentation evasion issue caused by lack of a check for the IP protocol during fragment matching.

CVE-2017-15377 In Suricata before 4.x, it was possible to trigger lots of redundant checks on the content of crafted network traffic with a certain
signature, because of DetectEngineContentInspection in detect-engine-content-inspection.c. The search engine doesn't stop when it
should after no match is found; instead, it stops only upon reaching inspection-recursion-limit (3000 by default).

CVE-2016-10728 An issue was discovered in Suricata before 3.1.2. If an ICMPv4 error packet is received as the first packet on a flow in the to_client
direction, it confuses the rule grouping lookup logic. The toclient inspection will then continue with the wrong rule group. This can lead to
missed detection.

CVE-2015-8954 The MemcmpLowercase function in Suricata before 2.0.6 improperly excludes the first byte from comparisons, which might allow remote
attackers to bypass intrusion-prevention functionality via a crafted HTTP request.

CVE-2015-0971 The DER parser in Suricata before 2.0.8 allows remote attackers to cause a denial of service (crash) via vectors related to SSL/TLS
certificates.

CVE-2014-9769 pcre_jit_compile.c in PCRE 8.35 does not properly use table jumps to optimize nested alternatives, which allows remote attackers to
cause a denial of service (stack memory corruption) or possibly have unspecified other impact via a crafted string, as demonstrated by 01 9
packets encountered by Suricata during use of a regular expression in an Emerging Threats Open ruleset.

Several memory related fixes
in latest Suricata release

Suricata 4.1.4 released

by inlinlac

We're pleased to announce Suricata 4.1.4. This release fixes a number of
in news, release issues found in the 4.1 branch.

Leave a comment

Get the release here:
https://www.openinfosecfoundation.org/download/suricata-4.1.4.tar.gz

Changes

Bug #2870: pcap logging with 1z4 coverity warning
Bug #2883: ssh: heap buffer overflow
Bug #2884: mpls: heapbuffer overflow in file decode-mpls.c

Bug #2887: decode-ethernet: heapbuffer overflow in file decode-
ethernet.c

Bug #2888: 4.1.3 core in HCBDCreateSpace
Bug #2894: smb 1 create andx request does not parse the filename
correctly

e Bug #2902: rust/dhcp: panic in dhcp parser

e Bug #2904: rust/ftp: panic in ftp parser

e Bug #2943: rust/nfs: integer underflow

e This release includes Suricata-Update 1.0.5

NETCAP @ HITBAMS2019

More memory issues
not listed in the Suricata bug tracker

Mitigations in IDS solutions

Suricata: Rust for several parsers
340k Lines ot C/ 17k Lines of Rust

Suricata 5 beta: Mandatory use of Rust

Call for testing: announcing
by inliniac Suricata 5.0.0'beta1

in news, release

We're happy to present the first beta in the upcoming Suricata 5.0 series. In
Leave a comment 5.0 we're making a couple of large changes.

Rust

The most visible is that our Rust support is no longer optional.j\We're

convinced that Rust is a perfect match for Suricata, and we plan to increase
its footprint in our code base steadily. By making it mandatory we're able to
remove parallel implementations and focus fully on making the Rust code
better.

NETCAP @ HITBAMS2019

Bro / Zeek: BinPAC parser generator

BinPAC

Format Specification C++ Parser Code

Problems with BinPAC

Bro 2.5.3

Bro 254
Bro 2.5.5

Bro 2.5.5 primarily addresses security issues.

e Fix array bounds checking in BinPAC: for arrays that are fields within a record, the bounds check
was based on a pointer to the start of the record rather than the start of the array field, potentially
resulting in a buffer over-read.

NETCAP @ HITBAMS2019

Problem #2: Signatures

Signatures

Can only detect known threats

Size of signature databases is continuously growing

Existing malware can be obfuscated to evade signature detection

IProblem?

NETCAP @ HITBAMS2019

Let's do it in Go!

Decodes network packets and generates audit records

Uses the gopacket library (~80k LoC) for decoding packets

Concurrent design: worker pool, each audit record written to a separate file

Audit record generation as compressed protocol buffers

Why protocol buffers?

Type safe structured data - can represent complex nested structures

Platform neutral - generate type definitions for your favourite language

NETCAP in a nutshell

Asynchronous T .
Packet Packet Data YProI'ocol Serialization Data Data Writing Data
Sources Collection . to Protocol Buffers Compression Buffering To Disk
Decoding
—] WORKER 1 |——] ETHERNET.PROTO »| GZIP = 4096 bytes »| Ethernet.ncap.gz
PCAP-NG
| WORKER 2 = IP.PROTO > GZIP | 4096 bytes > IPV4.ncap.gz
PCAP »| COLLECTOR »| WORKER 3 p——p] UDP.PROTO > GZIP | 4096 biytes > UDP.ncap.gz
—»| WORKER 4 p——> TCP.PROTO - GZIP ————>| 4096 bytes > TCP.ncap.gz
LIVE FROM
INTERFACE
— — > — >

Packet
Info

NETCAP worker

Layer
Encoders

Custom
Encoders

Timestamp
Packet

Protocol
Buffers

ETHERNET.PROTO

IPV4.PROTO

UDP.PROTO

TCP.PROTO

LINK LAYER FLOW
v v
NETWORK LAYER CONNECTION

v v

TRANSPORT LAYER LS

APPLICATI)N LAYER *
errors.log errors.pcap unknown.pcap
Decoding Malformed Unknown
Error Log Packets Protocols

NETCAP buffered workers

Packet Data Distribution Buffered Input Channel Configurable Number
via Round Robin for each worker of workers

—> WORKER 1

> WORKER 2

COLLECTOR

WORKER 3

—>> WORKER 4

Il

Available Audit Records?

Custom:

+ Flow (unidirectional)

+ Connection (bidirectional)

+ LinkFlow (disabled by default)

+ NetworkFlow (disabled by default)
+ TransportFlow (disabled by default)
+ TLS (Client Hello Msg + Ja3)

+ HTTP

Available Audit Records?

Layers

+ TCP

+ UDP

+ IPv4

+ IPvé

+ DHCPv4

+ DHCPvé

+ ICMPv4

+ ICMPvé

+ ICMPv6Echo

+ ICMPv6NeighborSolicitation
+ ICMPv6RouterSolicitation
+ DNS

+ ARP

+ Ethernet

+ Dot1Q

+ Dot11

+ NTP

+ SIP

+ 1GMP

+ LLC

+ [IPv6HopByHop

+ SCTP

+ SNAP

+ LinkLayerDiscovery

+ ICMPv6NeighborAdvertisement
+ ICMPv6RouterAdvertisement
+ EthernetCTP

+ EthernetCTPReply

+ LinkLayerDiscoverylnfo

v0.3.9

+ OSPF

+ BFD

+ GRE

+ FDDI

+ VRRPvVv?2

+ EAP

+ CiscoDiscovery
+ NortelDiscovery
+ IPSec

+ Geneve

+ VXLAN

+ USB

+ LCM

+ MPLS

+ ModbusTCP

NETCAP audit records

Single Audit Record Audit Record File
Timestamp < >
Field
Field Netcap File Header
Fiold TCP.ncap.gz (compressed)
e jngh| Asditecod | | TCP.ncap (uncompressed]
Field
] i
Field

Flow / Connection

Timestamp First Seen (seconds.micro)

Example

Link Layer Protocol

1499257434.003136

Network Layer Protocol

Ethernet

Transport Layer Protocol

IPv4

Application Layer Protocol

TCP

Source Mac Address

HTTP

Destination Mac Address

00:0c:28:9f:16:1e

00:0¢:28:¢9:60:ce

SrclP

173.15.11.103

SrcPort

1873

DstlP

95.100.238.75

DstPort

80

Size in bytes

922

Number of Packets

Timestamp Last Seen (seconds.micro)

Duration (nanoseconds)

1499257551.553088

117549952000

Format on disk: Length delimited audit records

STREAM

RECORD

LENGTH

PAYLOAD

LENGTH

PAYLOAD

LENGTH

PAYLOAD

I LENGTH | PAYLOAD

varint

bytes

Worker

Worker

Worker

Worker

Worker

Worker routines
for decoding traffic

>

FOI' concurrent access

Atomic Writer

Synchronization

-

NETCAP data pipe

Delimited Writer

Delimited
protobuf records

Gzip

> Buffer

Gzip

compression

Data buffering in memory

default: 4096 bytes

File

Output file
e.g: TCP.ncap.gz

NETCAP filtering & csv export

Ne.l.cap Field

Audit Records Selection Export

Timestamp,SrcMAC,DstMAC, EthernetType,
PayloadEntropy,PayloadSize

Ethernet.ncap.gz >

> Ethernet.csv

Timestamp, Version,IHL,TOS, Length,Id,Flags, FragOffset,
IPv4.ncap.gz »| TTL,Protocol,Checksum,SrclP,DstIP,Padding, Options, > IPv4.csv
PayloadEntropy,PayloadSize

Timestamp, SrcPort,DstPort,Length, Checksum,

UDP.ncap.gz PayloadEntropy,PayloadSize,... > il
Timestamp,SrcPort,DstPort,SeqNum,AckNum,
TCP.ncap.gz »| DataOffset, FIN,SYN,RST,PSH,ACK,URG,ECE,CWR, NS, > TCP.csv
Window, ...
P P
Input File Output File

S net.capture -r TCP.ncap.gz -select Timestamp, SrcPort,DstPort,SeqNum,Window,ACK,SYN,RST > TCP.csv

NETCAP labeling

reads
TCP.ncap.gz
oe>
V UDP reads
.ncap.gz
—>
Phase 1: net.capture _reads traffic.pcap ;
—> reads
Data generation \ Flow.ncap.gz
with net.capture
) reads
Connection.ncap.gz
Phase 2: suricata |————| traffic.pcap generates fast.log
Label extraction
with suricata
arses
TCP_labeled.csv
Phase 3: t.label
UDP_labeled.csv - net.labe
Mapping alerts

with net.capture
Flow_labeled.csv parsed alerts will be mapped
onto the collected data

concurrently for each audit record type

Connection_labeled.csv

important: granularity

final data in CSV format
with mapped alerts for each record

NETCAP sensors

DEVICE #1

Sensors
Exporting Data
via batched UDP datagrams

%

Ny

DEVICE #2

red
DEVICE #

QBQ N \

0
SOy O 0\ / / ="
0
()
~Sa %\ vu y ¥
NETCAP
COLLECTOR
Batch of Audit Data

Central Collection - Y
Server — —

Client ID
Device Type
Audit Record Type
Audit Data

NN—

Use Cases?

Monitor honeypots
Forensic Analysis

Research! :) - GPLv3 license

Classification of malicious behaviour with NETCAP
and a Deep Neural Network with Tensorflow

UNB

Y OF NEW BRUNSWICK

Canadian Institute for Cybersecurity

A About Research

Datasets

IDS 2012 »

IDS 2017 »

NSL-KDD >

VPN-nonVPN >

Botnet »

Android Validation >

Android Botnet »

Tor-nonTor >

Dos Dataset »

Android-Adware >

Android-Malware2017 >

CSE-CIC-IDS2018 »

Give to UNB Apply

Members Datasets

Intrusion Detection Evaluation
Dataset (CICIDS2017)

Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) are the most important
defense tools against the sophisticated and ever-growing network attacks. Due to the lack of
reliable test and validation datasets, anomaly-based intrusion detection approaches are suffering

from consistent and accurate performance evolutions.

Our evaluations of the existing eleven datasets since 1998 show that most are out of date and
unreliable. Some of these datasets suffer from the lack of traffic diversity and volumes, some do not
cover the variety of known attacks, while others anonymize packet payload data, which cannot

reflect the current trends. Some are also lacking feature set and metadata.

CICIDS2017 dataset contains benign and the most up-to-date common attacks, which resembles the
true real-world data (PCAPs). It also includes the results of the network traffic analysis using
CICFlowMeter with labeled flows based on the time stamp, source and destination IPs, source and

destination ports, protocols and attack (CSV files).

Generating realistic background traffic was our top priority in building this dataset. We have used
our proposed B-Profile system (Sharafaldin, et al. 2016) to profile the abstract behaviour of human
interactions and generates a naturalistic benign background traffic. For this dataset we built the

abstract behaviour of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols.

Q

CICIDS2017 Dataset:

Up to date, 5 days of traffic

Well documented

~50GB original PCAPs

Monday: Normal Traffic
Tuesday: Brute Force
Wednesday: DoS
Thursday: Web Attacks

Friday: Botnet Traffic

Experiment takeaways

Encoding strategies are vital for performance

High detection accuracy (95-99.9%) can be achieved with a handful of
extracted features (Flow / Connection Durations, Payload Size and Entropy)

Different approaches to labelling can be used to increase value for analysts

High accuracy for protocol specific approach

What's new

v0.3.9
Protobuf Serialisation Performance

with golang code generator:

$ go test -bench=. -v ./types
=== RUN TestMarshal

--- PASS: TestMarshal (0.00s)
goos: darwin

goarch: amdé64

pkg: github.com/dreadlOck/netcap/types

BenchmarkMarshal-12 10000000 184 ns/op 1 allocs/op
BenchmarkUnmarshal-12 10000000 160 ns/op 2 allocs/op
PASS

ok github.com/dreadlOck/netcap/types 3.830s

with gogo code generator:

$ go test -bench=. -v ./types
=== RUN TestMarshal

--- PASS: TestMarshal (0.00s)
goos: darwin

goarch: amdé64

pkg: github.com/dreadlOck/netcap/types

BenchmarkMarshal-12 20000000 89.1 ns/op 1 allocs/op
BenchmarkUnmarshal-12 20000000 110 ns/op 2 allocs/op
PASS

(0]7¢ github.com/dreadlOck/netcap/types 4.215s

v0.3.9

Payload Capture

Payload capture
It is now possible to capture payload data for the following protocols: TCP, UDP, ModbusTCP, USB

This can be enabled with the -payload flag:

net.capture -r traffic.pcap -payload

Also available for live capture:

net.capture -iface en0 -payload

v0.3.9

USB Decoding

USB decoding
USB live capture is now possible, currently the following Audit Records exist: USB and USBRequestBlockSetup.

To capture USB traffic live on macOS, install wireshark and bring up the USB interface:

sudo ifconfig XHC20 up

Now attach netcap and set baselayer to USB:

net.capture -iface XHC20 -base usb

To read offline USB traffic from a PCAP file use:

net.capture -r usb.pcap -base usb

v0.3.9

Configurable CSV Output

Configurable separators for CSV structures

The separator characters for structs in CSV output mode are now configurable via commandline flags.

Default is ‘(' for opening, ‘-’ as separator for values and ')’ for closing.

type Message struct {
string Text

bool Secret
int MagicNumber

would appear in CSV like:

(Text-Secret-MagicNumber)

with the concrete field values:

(Hi-true-42)

Restructured Interface

mimnd

ml

dlin

o T

S

v0.4

The commandline tools have been restructured and the framework now consists of:

e net.capture (capture audit records live or from dumpfiles)

e net.dump (dump with audit records in various formats)

e net.label (tool for creating labeled CSV datasets from netcap data)

e net.collect (collection server for distributed collection)

e net.agent (sensor agent for distributed collection)

e net.proxy (http reverse proxy for capturing traffic from web services)

e net.util (utility tool for validating audit records and converting timestamps)
e net.export (exporter for prometheus metrics)

Golang Library Improvements:

netcap.writer

The netcap library now exposes a data structure for writing audit records to disk.

Check out the GoDocs: https://godoc.org/github.com/dread|Ock/netcap

type Writer
func NewWriter(name string, buffer, compress, csv bool, out string, writeChan bool) *Writer
func (w *Writer) Close() (name string, size int64)
func (w *Writer) GetChan() <-chan []byte

func (w *Writer) Write(msg proto.Message) error

func (w *Writer) WriteCSV(msg proto.Message) (int, error)

func (w *Writer) WriteCSVHeader(msg proto.Message) (int, error)

func (w *Writer) WriteHeader(t types.Type, source string, version string, includesPayloads bool) error
func (w *Writer) WriteProto(msg proto.Message) error

Configurable gopacket.OecodeOptions

Gopackets DecodeOptions are now configurable via commandline, three options exist:
e lazy (gopacket.Lazy)

e default (gopacket.Default)

e nocopy (gopacket.NoCopy)

By default, netcap uses the the lazy decoding option.

v0.4

v0.4

Protobuf type definitions in each release

Precompiled type definitions for:

+ Go

+ C++

+ Java

+ Rust

+ CSharp
+ JS

+ Python
+ Swift

v0.4

Python Support

Retrieving the audit records as pandas dataframe:

#! /usr/bin/python

import pynetcap as nc

reader = nc.NCReader ('pcaps/HTTP.ncap.gz"')

reader.read(dataframe=True)

print("[INFO] completed reading the audit record file:", reader.filepath)

print ("DATAFRAME:")
print(reader.df)

NETCAP @ HITBAMS2019

7

\,

webservice1

)

y

'

webservice2

\,

N

N

A proxy for web services

NETCAP hiip proxy

7~

J

\,

net.proxy

/

e

\,

webservice3

p

y

v

client

¥ (HTTP[webservice1].ncap.gz]

y

(HTTP[webservice1].ncap.gz]

[HTTP[webserviceZ].ncap.gz]

v0.4

Enhanced HTTP audit records

Using the http tracing functionality from the go standard library,
several interesting time deltas have been added to the HTTP audit record type.

v0.4

Prometheus Metrics

NETCAP related metrics (Protocols, Decoding errors etc)
Go runtime related metrics (Number of goroutines, memory usage etc)
Audit record related metrics (Field values and custom metrics)

Prometheus metrics

NIC

NETCAP metrics

net.export (:7777/metrics)<

]

v0.4

)

e

PCAP

Y

i

TCP.ncap.gz

)

}

UDP.ncap.gz

)

(IPv4.ncap.gz]

Prometheus

|

Grafana

Overview Dashboard

NETCAP - Y @ Last 30 minutes

querylnterval 1m~ host All~ instance All v quantile 099~

Audit Records Total Audit Record Types

current
10 | ARP 2.295K
/ IN / IN70Y/ | / VA VA A N VAN DHCPv4 32
0010100 /|/011010 /|101010/ /0101010/ 001010 |/100110 |
@1 | o0 |00 @8 | 10 | _ oo | / 10 |oe | o1 | ’
DecodeFail 27

10 | 01 |e1001010/ @0 |/ |01 \ /0101000 |00 |__10/| ecoderallure
10| @0 |66/ /| 10 09/ @8/ / | @0 |08/ 00/ Ethernet 633K
00/ 10/ 0101000/ 0010/ 0010010/ 0010100/ 1010100/ ICMPv4
00 | Uptime
Network Protocol Analysis Framework 00 | _ .
created by Philipp Mieden, 2018 00/ ICMPv6NeighborAdvertisement 789
v0.4.0 ICMPv6NeighborSolicitation 813

4 1 1 hou r ICMPv6RouterAdvertisement 477K
Homepage: https://netcap.io . s

IGMP 2
GitHub: https://github.com/dreadl@ck/netcap IPv4 601K

1Pv6 297K

DNS 3.89K

1.255K
ICMPv6 6.50K

v Summary

Summary

A summary of the most relevant stats

Packets Processed Unknown Protocols Decoding Errors

632581 405072

Rate by Protocol

total
19
0
DNS 24
DecodeFailure 0
Ethemnet 1.8966 K
ICMPv4 10

ICMPv6

ICMPv6NeighborAdvertisement
H /A ICMPv6NeighborSolicitation
- == ICMP tisement

23:10 23:20

12D

Decoding Error Rate
total
== IPv6 length 0, but next header is UnknownIPProtocol, not HopByHop
= Invalid (too small) IP header length (0 < 5)

== Layer type not currently supported

HTTP Dashboard

88 NETCAP -
v HTTP

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia information systems.

HTTP is the foundation of data communication for the World Wide Web, where hypertext documents include hyperlinks to other resources that the user can easily access, for example by a mouse click or by tapping the screen in a web browser.

HTTP was developed to facilitate hypertext and the World Wide Web.

User Agents

W!

current
Mac 0S X/10.14.4 (18E226) 1
Mozilla/4.0 (compatible; FCT 6.0.5.0104; Windows NT 5.1)
Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:66.0) Gecko/20100101 Firefox/66.0
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML(comma) like Gecko) Chrome/73.0.3683.103 Safari/537.36
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/605.1.15 (KHTML(comma) like Gecko)
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML(comma) like Gecko) Chrome/33.0.1750.154 Safari/537.36
Mozilla/5.0 (iPhone; CPU iPhone 0S 12_1_3 like Mac 0S X) AppleWebKit/605.1.15 (KHTML(comma) like Gecko) Version/12.0 Mobile/15E148 Safari/604.1
Safari/14607.1.40.1.4 CFNetwork/978.0.7 Darwin/18.5.0 (x86_64)
com.apple.trustd/2.0
server-bag [Mac OS X(comma)10.14.4(comma)18E226(comma)MacBookPro15(comma)1]

ReqContentLength ~

@ Last 30 minutes

max
173.243.138.108
192.168.178.10
detectportal.firefox.com
init-p01md.apple.com
init-p01st.push.apple.com
init.ess.apple.com
isrg.trustid.ocsp.identrust.com
ocsp.apple.com
ocsp.comodoca.com

ocsp.digicert.com

Aren int.va lateannrunt nrn

current

8

6
4
2

current
216

4

4

2

TCP Dashboard

88 NETCAP -

@ Last 30 minutes
> IPv6 (9pa

v TCP

Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP.

TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP.

Packets by SrcPort Packets by DstPort TCP Packets with URG Flag set
current current current
83 83 611K

356K 192K

29

TCP Payload Size TCP Payload Entropy

0B L) \ !

22:52 22:54 23:04 23:08 23:10 2312 2314 2316 22:52 22:54 23:02 23:04 23:06 23:08 2310 2312 2314 23116 2318

== TCP Payload Entropy == TCP Payload Entropy

Packets with ACK Flag set Packets with RST Flag set Packets with SYN Flag set ~
current

current current
- false 6.52K 608 K - false 603K
- true 605K 2.561K

- true 8.24K

false: 603 K (98.65%)

v0.4

Alpine Linux Docker Image

Wdockerhub Q Search for great content (e.g., mysql) Explore Repositories Organizations Get Help ¥ dreadlOock ~ (ffl"ﬁ

dreadlOck/netcap Manage Repository |
By dreadl|Ock + Updated 13 days ago
Netcap docker containers S, Pulls 2
Container
Overview Tags

Docker Pull Command

An alpine linux container with the netcap network security monitoring framework preinstalled.

Homepage: https://netcap.io docker pull dreadlOck/netcap

Owner

dreadlOck

NETCAP @ HITBAMS2019

Website

13:47 Wed 8. May
& netcap.io

NETEA/P Features Blog Download

Ig\

Cancurrent ODesigr _ommandline Interface USB Capture

SPen SOUrE:= ' / PCAP Support _ive Capture

(@ NETCAP

Overview

Protocol Support
Specification
Installation
Quickstart

Packet Collection
Audit Record Labeling
HTTP Proxy

USB Capture

Payload Capture
Distributed Collection
Workers

Filtering and Export
Downloads

Internals

Metrics

Python Integration
FAQ

Extension
Contributing

License

v0.4

Documentation

docs.netcap.io

Overview GitHub Homepage GoDoc Q
OverVIeW Design Goals
A brief overview Framework Components
Use Cases
Demos
License

Source Code Stats

01101001 01110011 00100000 01110111 01100001 01110100 01100011 01101000
01101001 01101110 01100111 00100000 01111001 01101111 01110101 00101110

The Netcap (NETwork CAPture) framework efficiently converts a stream of network packets into highly
accessible type-safe structured data that represent specific protocols or custom abstractions. These
audit records can be stored on disk or exchanged over the network, and are well suited as a data source
for machine learning algorithms. Since parsing of untrusted input can be dangerous and network data is
potentially malicious, implementation was performed in a programming language that provides a garbage
collected memory safe runtime.

It was developed for a series of experiments in my bachelor thesis: Implementation and evaluation of
secure and scalable anomaly-based network intrusion detection. Currently, the thesis serves as
documentation until the wiki is ready, it is included at the root of this repository (file: mied18.pdf). Slides
from my presentation at the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and
Humanities are available on researchgate.

NETCAP @ HITBAMS2019

Future Development

- YARA support for labelling
- benchmarks & performance optimizations

- Deep Packet Inspection Module that looks
for certain patterns in the payload to identitfy
the application layer

- implement IPv6é stream reassembly

- implement an interface for application layer
decoders that require stream reassembly

Questions?

dreadlOck@protonmail.ch

