
macOS local security:
escaping the sandbox and bypassing
TCC

Thijs Alkemade & Daan Keuper
Computest Research Department

TRACK 1

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Speakers

Thijs Alkemade (@xnyhps)
Daan Keuper

linkedin.com/in/daan-keuper/
linkedin.com/in/thijs-alkemade-28833414/

Topic

• Suppose you have code execution as unprivileged user in
macOS

• But sometimes you need more!
• How do you gain administrative access?
• Which hurdles do you have to overcome?

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Agenda

• Deep dive in protection mechanisms on macOS
• Code signing, Sandbox, TCC, SIP, SSV

• Discuss some vulnerabilities we found during our research
• Unfortunately they are not all patched by Apple

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

macOS Security Mechanisms

Gatekeeper

Introduction

• Code Signing was introduced in Mac OS X Lion (10.7)
• Required for applications, though users can make a manual

exception if an application is not signed
• Verification is handled by
com.apple.driver.AppleMobileFileIntegrity.kext
and /usr/libexec/amfid

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Entitlements

• Every code signed application can be given a set of fine-grained
permissions, using entitlements that are signed by Apple

• Typically special permissions are given to a (smaller) privileged
process, communicating over XPC

• Important security mechanism, used across the entire operating system
• If an older vulnerable application has a specific entitlement, you could

ship it with your malware

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ ARCH=x86_64 jtool2 --ent /bin/ps
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.system-task-ports</key>
 <true/>
 <key>task_for_pid-allow</key>
 <true/>
</dict>
</plist>

~ codesign -d -vvvvvv /bin/ps
Executable=/bin/ps
Identifier=com.apple.ps
Format=Mach-O universal (x86_64 arm64e)
CodeDirectory v=20100 size=797 flags=0x0(none) hashes=18+5 location=embedded
Platform identifier=11
VersionPlatform=1
VersionMin=721152
VersionSDK=721152
Hash type=sha256 size=32
CandidateCDHash sha256=21d01508bc6e73222dedb4b914fc05acddba8075
CandidateCDHashFull sha256=21d01508bc6e73222dedb4b914fc05acddba8075e12b009ce0577710af10878e
Hash choices=sha256
CMSDigest=21d01508bc6e73222dedb4b914fc05acddba8075e12b009ce0577710af10878e
CMSDigestType=2
…
CDHash=21d01508bc6e73222dedb4b914fc05acddba8075
Signature size=4577
Authority=Software Signing
Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA
Signed Time=23 Nov 2020 at 12:15:15
Info.plist=not bound
TeamIdentifier=not set
Sealed Resources=none
Internal requirements count=1 size=60

~ otool -l /bin/ps
…
Load command 16
 cmd LC_CODE_SIGNATURE
 cmdsize 16
 dataoff 69872
 datasize 6240

Resources

• The binary itself is signed and checked on every execution
• Resources itself are also signed, using <app>/Contents/
_CodeSignature/CodeResources

• This is a signed plist which contains a hash of all resource files
• Unfortunately these are only checked on first run when the

quarantine bit is set

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Hardened Runtime

• Introduced in macOS Mojave (10.14)
• Enforced for Apps installed from the App Store
• Protects applications against various forms of process injection
• Prohibits the use of DYLD_ environment variables, JIT and

checks code signatures of libraries

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Seatbelt

Introduction

• Introduced in Mac OS X 10.5 (Leopard)
• Enforced for almost all of Apple’s applications
• Mac App Sandbox added in OS 10.7, giving each app a

separate container in ~/Library/Containers/<bundle>
• Handled by com.apple.security.sandbox.kext and /
usr/libexec/sandboxd

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Profiles

• Profiles are written in Scheme, can be found under /System/
Library/Sandbox/Profiles

• The sandbox has hooks in all systemcalls, across the entire
kernel tree

• A profile is based on the entitlements of the application

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ cat /System/Library/Sandbox/Profiles/com.apple.iMessage.addressbook.sb
…
(version 1)
(import "com.apple.iMessage.shared.sb")

(allow mach-lookup
 (global-name "com.apple.AddressBook.abd")
 (global-name "com.apple.AddressBook.AddressBookApplicationFrameworkIPC")
 (global-name "com.apple.AddressBook.ContactsAccountsService")
 (global-name "com.apple.AddressBook.SourceSync")
 (global-name “com.apple.backupd.xpc")
 (global-name "com.apple.corerecents.recentsd")
 (global-name "com.apple.logind")
 (global-name "com.apple.lsd.mapdb")
 (global-name "com.apple.metadata.mds")
 (global-name "com.apple.spotlight.IndexAgent")
 (global-name "com.apple.system.opendirectoryd.api")
)

(allow user-preference-read
 (preference-domain "com.apple.AddressBook")
 (preference-domain "com.apple.AddressBook.CardDAVPlugin")
)

(allow user-preference-write
 (preference-domain "com.apple.AddressBook")
)

(allow file-map-executable
 (subpath "/System/Library/Address Book Plug-Ins")
 (home-subpath "/Library/Application Support/AddressBook/Sources")

System Integrity Protection

Introduction

• Introduced in OS X El Capitan (10.11)
• Sometimes revered to as ‘rootless’, internally often referenced

as CSR (Configurable Software Restrictions)
• Aimed at limiting the power the root user has on a system
• Restricts file modifications, kernel/system extension loading

and process debugging

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

 ~ sudo rm /bin/bash
override r-xr-xr-x root/wheel restricted,compressed for /bin/bash? y
rm: /bin/bash: Operation not permitted

~ sudo dtruss /bin/ls
dtrace: system integrity protection is on, some features will not be
available

dtrace: failed to execute /bin/ls: (os/kern) failure

~ ls -ld -O@ /bin
drwxr-xr-x@ 38 root wheel restricted,hidden 1216 Jan 1 2020 /bin
 com.apple.rootless 0

~ ls -lO@ /bin/ls
-rwxr-xr-x 1 root wheel restricted,compressed 157360 Jan 1 2020 /bin/
ls

Technical details

• Effectively a sandbox profile called platform_profile
• Configuration can be found under /System/Library/
Sandbox/rootless.conf

• Enabled on boot using the csr-active-config nvram
variable, changing this variable is prohibited by SIP

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ ARCH=x86_64 jtool2 --ent /bin/ps
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.system-task-ports</key>
 <true/>
 <key>task_for_pid-allow</key>
 <true/>
</dict>
</plist>

Transparency, Consent &
Control

You’ve probably seen this as

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Introduction

• Introduced in macOS Mojave (10.14)
• Dynamic sandbox for privacy sensitive subsystems, e.g. access to the

camera, location services, Documents folder etc.
• Permissions are inherited from the parent process
• Permissions are stored with the Bundle ID and Developer ID
• You could ship an older vulnerable version of an app with your malware

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ ps -ax -o pid,user,command | grep "[t]ccd"
 131 root /System/Library/PrivateFrameworks/TCC.framework/Resources/tccd
system
 6929 user /System/Library/PrivateFrameworks/TCC.framework/Resources/tccd

~ sudo procexp all fds | grep tccd | grep .db
tccd 131 FD 5u /Library/Application Support/com.apple.TCC/TCC.db @0x0
tccd 6929 FD 4u /Users/user/Library/Application Support/com.apple.TCC/TCC.db
@0x0

~ sqlite3 ~/Library/Application\ Support/com.apple.TCC/TCC.db
Error: unable to open database "/Users/user/Library/Application
Support/com.apple.TCC/TCC.db": authorization denied

~ ls -lO@ /Library/Application\ Support/com.apple.TCC/TCC.db
-rw-r--r-- 1 root wheel restricted 77824 Dec 28 13:35 /Library/
Application Support/com.apple.TCC/TCC.db

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ log show --info -last 30m --predicate 'subsystem == "com.apple.TCC" AND eventMessage contains "service="'
2020-12-28 14:52:24.340833+0100 0x9920 Info 0x10dd0 193 0 coreaudiod: (TCC) [com.apple.TCC:access] SEND: 0/7
synchronous to com.apple.tccd.system: request: msgID=193.1, function=TCCAccessRequest, service=kTCCServiceMicrophone, target_token={pid:1779,
auid:501, euid:501},
2020-12-28 14:52:24.341111+0100 0x99a4 Info 0x10dd0 133 0 tccd: [com.apple.TCC:access] REQUEST_MSG: msgID=193.1,
msg={
 require_purpose=<xpc_null>
 service="kTCCServiceMicrophone"
 function="TCCAccessRequest"
 preflight=false
 target_token={pid:1779, auid:501, euid:501}
 TCCD_MSG_ID="193.1"
 background_session=false
}
2020-12-28 14:52:24.341514+0100 0x99a4 Default 0x10dd0 133 0 tccd: [com.apple.TCC:access] FORWARD: to=com.apple.tccd,
request: {
 require_purpose=<xpc_null>
 service="kTCCServiceMicrophone"
 function="TCCAccessRequest"
 preflight=false
 target_token={pid:1779, auid:501, euid:501}
 TCCD_MSG_ID="193.1"
 background_session=false
}
2020-12-28 14:52:24.342541+0100 0x8c1d Info 0x10dd0 390 0 tccd: [com.apple.TCC:access] REQUEST_MSG: msgID=193.1,
msg={
 require_purpose=<xpc_null>
 service="kTCCServiceMicrophone"
 function="TCCAccessRequest"
 preflight=false
 target_token={pid:1779, auid:501, euid:501}
 TCCD_MSG_ID="193.1"
 background_session=false

~ ARCH=x86_64 jtool2 --ent /System/Library/PrivateFrameworks/TCC.framework/Resources/tccd
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.fileprovider.acl-read</key>
 <true/>
 <key>com.apple.private.kernel.global-proc-info</key>
 <true/>
 <key>com.apple.private.notificationcenterui.tcc</key>
 <true/>
 <key>com.apple.private.responsibility.set-arbitrary</key>
 <true/>
 <key>com.apple.private.security.storage.TCC</key>
 <true/>
 <key>com.apple.private.system-extensions.tcc</key>
 <true/>
 <key>com.apple.private.tcc.allow</key>
 <array>
 <string>kTCCServiceSystemPolicyAllFiles</string>
 </array>
 <key>com.apple.private.tcc.manager</key>
 <true/>
 <key>com.apple.rootless.storage.TCC</key>
 <true/>
</dict>
</plist>

Signed System Volume

Separate System Volume

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Introduction

• Introduced in macOS Big Sur as an extension to the read-only
system volume from macOS Catalina

• Protects macOS system files from tampering
• Adds cryptographic signature to all data on the system volume

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Merkle Tree

• The system volume now contains a Merkle Tree which is validated
during the boot process

• The hashes are stored as metadata in APFS
• On the root node this is called the seal
• If the seal is broken, the system restores from a previous snapshot
• Relevant data structures can be found in the Apple File System

Reference

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Installing macOS Updates

• Your system has a permanently hidden Update volume, which
is a snapshot of your Big Sur installation

• Patches are applied to this snapshot, if everything succeeded
the snapshot is sealed and booted

• If the update fails the system can use its previous snapshot

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

~ diskutil apfs list
|
+-- Container disk1 C45A2F01-3035-4029-8440-0E8EEF1B6AD8
 ==
 APFS Container Reference: disk1
 Size (Capacity Ceiling): 499963174912 B (500.0 GB)
 Capacity In Use By Volumes: 476552110080 B (476.6 GB) (95.3% used)
 Capacity Not Allocated: 23411064832 B (23.4 GB) (4.7% free)
 |
 +-< Physical Store disk0s2 D09B1C47-F45F-4250-9E20-272728D1F1C9
 | ---
 | APFS Physical Store Disk: disk0s2
 | Size: 499963174912 B (500.0 GB)
 |
 +-> Volume disk1s5 F5B775BF-EEEF-4323-AF4D-6174B11D7AB9

 APFS Volume Disk (Role): disk1s5 (System)
 Name: Macintosh HD (Case-insensitive)
 Mount Point: /private/tmp/msu-target-dTWDlHYc
 Capacity Consumed: 15047917568 B (15.0 GB)
 Sealed: Broken
 FileVault: Yes (Unlocked)
 Encrypted: No
 |
 Snapshot: 264AD255-656D-4C75-A1B7-C2ADEBDCBBBC
 Snapshot Disk: disk1s5s1
 Snapshot Mount Point: /
 Snapshot Sealed: Yes

Overview

• Code Signing guarantees that code was published by a specific
organisation

• Seatbelt handles static permissions for apps
• TCC handles user controlled permissions
• SIP guarantees the integrity of the system as a whole
• Signed System Volume prevents modification of system files

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Bug Bounties

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Vulnerabilities

Adobe Acrobat DC
Privileged updaters

Introduction

• Some systems the main user has a standard user account.
• Non-admin users are not allowed to change /Applications.
• How to install updates?
• Service running as root to handle installation.

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Privileged updaters

• Adobe Acrobat DC was vulnerable.
• No codesigning check, symlinks for update package.
• Reported by Yuebin Sun (@yuebinsun2020) of Tencent Security

Xuanwu Lab. (May 2020)
• https://rekken.github.io/2020/05/14/Security-Flaws-in-Adobe-

Acrobat-Reader-Allow-Malicious-Program-to-Gain-Root-on-
macOS-Silently/

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Privileged updaters

• Adobe Acrobat DC was still vulnerable.
• Wrong codesigning check, hardlinks allowed.
• Reported by Csaba Fitzl (@theevilbit) from Offensive Security

working with iDefense Labs. (August 2020)

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Privileged updaters

• Adobe Acrobat DC was still vulnerable…
• Codesigning check unfinished, open file descriptor.
• Reported by Thijs Alkemade from Computest Research

Division. (November 2020)

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Privileged updaters

• Affected many other apps too:
• Google Chrome
• Microsoft AutoUpdate
• Microsoft Teams
• (Unnamed company, still under disclosure)

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Privileged updaters

• Nothing uninstalls the updater if you delete the app
• If you have ever used Adobe Acrobat and then deleted it, you’ll

probably still have a vulnerable updater!
• Check /Library/LaunchAgents and /Library/
LaunchDaemons

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

CVE-2020-27900
Open and save panels

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC Contents of panel:
openAndSavePanelService

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC Contents of panel:
openAndSavePanelService

Contents of panel:
openAndSavePanelServiceWindow: the app

Open panels

• Private method -[NSRemoteView snapshot:]
• Takes an image of the panel, returns it to the app!
• List of files, previews of certain files, etc.

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

CVE-2020-10009
System Preferences sandbox escape

fork() + exec()

system("ls /");

Applications Secomba bin home tmp […]

system("/Applications/Safari.app/Contents/MacOS/Safari");

kernel Sandbox: Safari(47541) deny(1) forbidden-
sandbox-reinit

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

System Preferences

system("/System/Applications/System\\ Preferences.app/
Contents/MacOS/System\\ Preferences");

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

System panes: XPC services

Third-party panes: bundles

System Preferences

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

System Preferences

1. Launch System Preferences.
2. Wait for it to create its usercache file.
3. Kill System Preferences.
4. Modify cache to point to a bundle in my app.
5. Start System Preferences.
6. Wait for user to activate the modified pane.

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

x-apple.systempreferences:com.apple.preference.network

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

System Preferences

1. Create valid usercache file with my own bundle.
2. Add alert for the added preference pane.
3. Start System Preferences.

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

System Preferences

• Fixed: Now quits if the app is in a sandbox.

Thijs Alkemade & Daan Keuper | macOS local security: escaping the sandbox and bypassing TCC

Electron
TCC

Electron

• TCC permissions are stored based on:
• Bundle ID
• Developer ID

• App version and filesystem path are irrelevant.

Electron

• Code signing check for TCC only checks the executable.
• With hardened runtime, libraries & frameworks are also

checked.
• Interpreted code is not checked!
• Electron apps contain most of their code as JavaScript…

Electron

1.Copy app to a writable location.
2.Replace JavaScript with malicious code.
3.Launch modified app.
4.Use TCC permissions of the app.

https://objective-see.com/products/oversight.html

Not just Electron…..

1.Download old copy of the app without library validation.
2.Replace any library with malicious library.
3.Launch app.
4.Use TCC permissions of that app.

App process injection

Process injection

• We saw that process injection can be used to:
• Communicate with privileged helpers
• “Steal” TCC permissions

• But what if we attack Apple’s own apps…?

Process injection

• Suppose we can inject into any application
• Then we can:
• Sandbox escape
• Escalate privileges from normal user to root
• SIP filesystem bypass

Sandbox escape

• Inject in a non-sandboxed process.

Privilege escalation

<key>
 com.apple.private.AuthorizationServices
</key>
<array>
 <string>
 system.install.apple-software
 </string>
 <string>
 system.install.apple-software.standard-user
 </string>
</array>

Privilege escalation

• Ilias Morad (@A2nkF_) found that the post-install script of
macOSPublicBetaAccessUtility.pkg can execute arbitrary code
as root.
• From CVE-2020–9854: “Unauthd” (https://a2nkf.github.io/

unauthd_Logic_bugs_FTW/)

Privilege escalation

• From CVE-2020–9854: “Unauthd” (https://a2nkf.github.io/
unauthd_Logic_bugs_FTW/)

SIP filesystem bypass

• macOS Update Assistant.app from an installation image can
write to SIP locations:

<key>
 com.apple.rootless.install.heritable
</key>
<true/>

Thoughts
Do these security measures work?

TCC

• Still pretty new and unknown by developers
• Only one app needs to be vulnerable to give malware

permission
• Electron apps are inherently vulnerable

Sandboxing

• Low-level & kernel parts receive a lot of attention on iOS
• Higher layers are different: many interesting and unexplored

attack surfaces on macOS

Process injection

• Windows and Linux have no security boundary between processes of the same
user, unless opted-in to sandboxing (UWP, SELinux)
• Therefore, all apps can access the same data and features

• Therefore, TCC is an extra security layer of macOS. Breaking it does not make
macOS less secure than Windows or Linux.
• However, process injection vulnerabilities now have huge impact

• Single process injection vulnerability: privilege escalation to root and bypass
SIP

Conclusion

Conclusion

• Apple is trying to bring the security of macOS to the level of
iOS
• But still a long way to go
• Needs work from all app developers
• Apple doesn’t want to enforce too many new restrictions at

once

Thank You
For your attention

research@computest.nl

