
Utilizing Lol Drivers in Post-
Exploitation Tradecraft
Barış Akkaya
Red Team Engineer at Picus Security

TRACK1

whoami

Barış Akkaya
@OccamsXor
Red Team Engineer at Picus Security

#direnbogazici
#direnbogazici

Agenda

ØMotivations & Challenges of kernel mode attacks
ØAnalysis of a Lol Driver
ØImplementation of TTPs using the Lol Driver

• Reading PEB of a Process
• Weaponizing tools with Lol Driver
• Thread Hijacking

ØSubverting Protected Processes
• Crafting a simple meterpreter loader

ØNew tool to use Lol driver threats

User Mode & Kernel Mode

ØCurrent public offensive security practices mainly focuses on user-mode
threats. However, threat actors still combines kernel mode attacks with user
mode techniques.

ØDefensive products and tools also aligned with this trend because of the
importance and variety of user mode threats.

ØWhy Kernel mode?
• Evasion
• Bypassing user-mode controls
• Manipulating OS and AV components

API Hooking

ØBread and butter of EDRs and
Sandboxes

ØUser mode technique for behavioral
analysis

ØAttacker’s current options:
• Unhook with fresh copy of ntdll
• Use direct syscalls in compilation
• Use Blockdlls + ACG

Source:
https://web.archive.org/web/20170626120942/https://blogs.msdn.microsoft.com/hanybarakat
/2007/02/25/deeper-into-windows-architecture/

https://web.archive.org/web/20170626120942/https:/blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/

Kernel mode Challenges

ØProne to error
ØNeed to have Administrator privileges
ØDeploying driver is a noisy action
ØMicrosoft DSE and PatchGuard

DSE and Patchguard

ØDriver Signature Enforcement and EV certificates for Windows 10
• “All drivers for Windows 10 (starting with version 1507, Threshold 1) signed by the

Hardware Dev Center are SHA2 signed” – msdn
ØPatchGuard (or Kernel Patch Protection) is a mechanism to defend against

kernel patches.
• “Because patching replaces kernel code with unknown, untested code, there is no

way to assess the quality or impact of the third-party code…” – Microsoft FAQ
• Affects both rootkits and AVs

ØStill various bypasses exist for turning off DSE and PatchGuard
• Using signed vulnerable drivers is fairly studied subject (capcom.sys)

LOL Drivers?
ØMaybe, we can use non-vulnerable

drivers for our purposes
• No need to develop drivers from scratch
• No need to bypass DSE or PatchGuard (could cause

BSODs)

ØWhere can we find such a driver?

Process Hacker
Ø How Process Hacker extracts so much data?

• It installs its own driver

Ø Some malware families (like Dridex) already uses
Process Hacker in a simple way

https://www.crowdstrike.com/blog/doppelpaymer-
ransomware-and-dridex-2/

https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/

Process Hacker Analysis

Ø Reading PH code teaches a lot. <3
https://github.com/processhacker/processhacker
Ø Process Hacker uses IOCTLs to communicate with its own driver
https://docs.microsoft.com/en-us/windows/win32/devio/device-input-and-output-control-ioctl-

https://github.com/processhacker/processhacker
https://docs.microsoft.com/en-us/windows/win32/devio/device-input-and-output-control-ioctl-

Process Hacker Analysis

kph.c

kph.c

kph.c

Process Hacker
Driver

Look at all the IOCTLs…
Wait
Look at all the IOCTLs that I cannot
use L
All the good IOCTLs are actually
“protected”.

kphapi.h

• Process Hacker driver has client
verification for IOCTLs that can
be used for malicious purposes.

• The IOCTL key is generated in
the verification process when
the driver is installed.

• Driver checks the signature and
the image of the process calling
its IOCTL with its own key.

kph.h

Verify.c

https://github.com/processhacker/processhacker/commits/d2cd2a12294676cda1516b9023af91a7466817fa/KProcessHacker/process.c

https://github.com/processhacker/processhacker/commits/d2cd2a12294676cda1516b9023af91a7466817fa/KProcessHacker/process.c

Old kphapi.h New kphapi.h

Using IOCTLs

Let’s start with reading PEB of a process:
• Get Process Handle
• Query PEB address
• Read Process Memory

process

NtOpenProcess()

NtQueryInformationProcess()

KProcessHacker.sys

NtReadVirtualMemory()

User mode Kernel mode

System Service
Dispatcher

Using IOCTLs

Let’s start with reading PEB of a process:
• Get Process Handle
• Query PEB address
• Read Process Memory

process NtQueryInformationProcess()

KProcessHacker.sys

User mode Kernel mode

System Service
Dispatcher

NtDeviceIoControlFile()

NtDeviceIoControlFile()

_IRP_DEVICE_CONTROL

Standard Read PEB function

Kprocesshacker Read PEB function

DEMO HERE

Advantages of using
IOCTLs
• Harder to detect by API Hooking
• Process Hacker driver uses kernel mode

access when opening processes.
• Well, we want to skip access checks too

• AV minifilters may ignore notifications came
from Kernel mode operations.

Process.c

Handle Management
• Microsoft has a checklist for driver developers with “Handle Management” sub-topic.
• https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/handle-management

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/handle-management

Weaponizing Tools to Use IOCTLs

ØRewriting all tools to use IOCTLs instead of API calls can be costly for
red teams.

ØIt’s necessary to modify the tools dynamically in run-time.
• We can learn from defensive products: API Hooking again
• Altering execution flow of a tool by using hooking

ØWe can use any hooking library (Detours, MinHook, EasyHook or DIY) to
rewrite API calls

Using Microsoft Detours

DEMO HERE

Implementing Process Injection

• Process Injection basically consists of 3 steps:
• Allocating Memory
• Writing to Memory
• Executing Payload

• We can change API calls with IOCTLs for some of these steps.

T h r e a d
E x e c u t i o n
H i j a c k i n g

Implementation Graph

OpenProcess() KphOpenProcess()

OpenThread() KphOpenThread()

WriteProcessMemory() KphWriteProcessMemory()

SuspendThread() KphSuspendProcess()

GetThreadContext() KphGetContextThread()

SetThreadContext() KphSetContextThread()

ResumeThread() KphResumeProcess()

T h r e a d
E x e c u t i o n
H i j a c k i n g

R e w i r e d

DEMO HERE

Protected Processes
• With Windows 8.1 Microsoft introduces Protected

Process Light
• PPL can act as a security boundary between OS

components and user applications.
• Protection Level of a Process is defined by a field in

EPROCESS kernel object.
• When opening a handle to PPL process the access

right is masked by a specific Kernel function.

Source: https://googleprojectzero.blogspot.com/2018/10/injecting- code-into-windows-
protected.html

https://googleprojectzero.blogspot.com/2018/10/injecting-%20code-into-windows-protected.html

Subverting PPL Processes

ØEverybody try to turn off PPL. Can we also use it for evasion?
• Cannot get a handle to manage the PPL process.
• Must use a PPL signed binary

ØCan I spawn PPL processes?
• wininit.exe
• services.exe
• smss.exe
• csrss.exe

Simple Loader Using Kph

Simple Loader Using Kph

DEMO HERE

New tool: OffensivePH

• OffensivePH utilizes Process Hacker’s driver for its modules.
• You can find it here:
• https://github.com/RedSection/OffensivePH

https://github.com/RedSection/OffensivePH

Future Work

• Hunt Lol-Drivers
• Implement new techniques
• Less noisy ways of installing drivers

Thank You
Questions?

