
Exploiting QSEE, the Raelize Way!

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Overview

• Introduction

• Our unexpected cup of QSEE

• Breaking into QSEE using a:

• software vulnerability

• hardware vulnerability

• Takeaways

• Q&A

2

Niek Timmers

Introduction

• Co-Founder at Raelize; Security Researcher

• 10+ years experience with analyzing the

security of devices

Cristofaro Mune

• Co-Founder at Raelize; Security Researcher

• 15+ years experience analyzing the security

of complex systems and devices

“in between” SoftwareSoftwareHardwareHardware

We like low-level software and hardware, things like
OS, TEE, Secure Boot, Fault Injection, etc.

3

Let’s get started…

4

5

What do these devices have in common?

We like analyzing connected devices.

ASUS RT-AC58U

Cisco Meraki MR33

Linksys EA8300

Aruba AP-365
Netgear Orbi RB20

6

A few eventually showed up in our lab…

Qualcomm IPQ4018/19-based devices

• System-on-Chip

• Quad-core ARM Cortex-A7 (ARMv7)

• Lot’s of interfaces (e.g. i2c, JTAG, SPI, etc.)

• Many devices use a chip from this family

• OpenWRT supports 34 products

• Not all devices are supported

7

Long story short, we got excited…

Qualcomm IPQ40xx Hardware Security

Source: https://www.qualcomm.com/products/ipq4019

https://www.qualcomm.com/products/ipq4019

The Target(s)

• We’ve analyzed multiple

Qualcomm IPQ4018/19-based devices

• This talk will mostly be about the

Linksys EA8300

• Our findings are likely applicable to all

devices

8

Opening the device

9

UART

10

Breaking into the bootloader

• Simply press any key

during boot

• Useful commands are not

stripped from U-Boot

• tftpput

• nand

• go

• …

• We fully control the

REE (i.e. Linux)

11

Let’s conclude a few things…

• Boot chain somewhat similar as (old) Qualcomm SoC phones

• Qualcomm TEE (i.e. QSEE) is loaded and started

• Secure boot is broken for the REE (i.e. we can break into U-Boot)

• May still be enabled for SBL1 and QSEE

12

PBL (ROM) SBL1 (SRAM)

QSEE (DDR)

U-Boot (DDR) Linux (DDR)

13

Let’s load it into IDA…

Analyzing QSEE

• Obtain partition table using an the

‘smeminfo’ U-Boot command

• A dedicated partition is used to store QSEE

• Use a TFTP server to dump these partitions

• setenv serverip 192.168.1.128

• nand read 0x89000000 0x200000 0x100000

• tftpput 0x89000000 0x100000 QSEE.bin

14

Linux Kernel issues SMC instruction. CPU traps into QSEE.

What to look for?

QSEE (PL1)Linux Kernel (PL1)

APP-1

(PL0)

APP-2

(PL0)

APP-N

(PL0)

TA-1

(PL0)

TA-2

(PL0)

TA-N

(PL0)

REE / Non-secure World TEE / Secure World

SMC instruction

Secure Monitor (PL1)

15

Software_Interrupt() calls the smc_handler()

Exception Vector (ARMv7)

An SMC leads to a Software Interrupt…

16

Very useful for reverse engineering…

SMC handler routine table

SMC ID

Name

Routine

Communicating with QSEE

Qualcomm IPQ4019Qualcomm IPQ4019 Secure Boot

Execution Memory Peripherals Modules

Drivers

REE TEE

QSEE

Hardware separation primitives

Trusted

Application

Library

System TA
Trusted

Application

Bootloaders

17

Application Application Application

Linux

U-BootU-Boot

Communication option 1

Communication option 2

Our approach (option 2)

• QSEE is initialized before U-Boot is started

• QSEE environment is likely the same during boot and runtime

• Extend U-Boot using ‘standalone’ applications

• Loaded into internal memory using the ‘tftp’ command

• Executed using the ‘go’ command

• Allows us to execute arbitrary code in the context of U-Boot

18

19

We control the arguments that are passed…

Communicating with QSEE

REE / Non-secure World TEE / Secure World

Enumerating all SMC handler routines

• Use tzbsp_is_service_available to recover

available SMC handler routines

• Iterate over all possible ‘svc’ and ‘cmd’

combinations (i.e. 0 to 0xffff)

• Results match the SMC handler routines we

identified in the binary

20

21

How to trust the untrusted?

This son of !@#$%, all night he, "Check. Check. Check."

22

We dive deeper into secure range checks later on…

Secure Ranges

• Check if the pointer argument points to non-secure memory

• Prevents passing pointers that would read or write secure memory

23

Do all SMC handler routines
arguments received from the REE?

tzbsp_blow_fuses_and_reset (CVE-2020-11256)

• Argument arg1 is checked using

is_allowed_range()

• But, arg2 is not…

• Write 1, 2 or the output of

sub_87E97794 to any address

(incl. secure memory)

24

usb_calib (CVE-2020-11257)

• Argument arg1 directly dereferenced

without any check

• Write what is stored at 0x580e0 to

any address

• On the Linksys EA8300 we analyzed

this value was 0x787

25

tzbsp_version_set (CVE-2020-11258)

• All four arguments are passed

into a function that returns a

value based on the arguments

• Argument arg3 is dereferenced

to store the return value of the

function

• Moreover, it can also be used to

write 0x7FFFFFFF to any address

26

tzbsp_version_get (CVE-2020-11259)

• Argument arg2 and arg3 are

dereferenced directly

• Use arg3 to write 0x0 to any

address

• Use arg2 to write the return value

of sub_87E904CE to any address

27

Summary

• Several SMC handler routines sanitize their arguments insufficiently

• Un-sanitized pointers allow us to write to secure memory

• No arbitrary writes, just a few restricted values (e.g. 0, 1, 2, etc.)

• Please note, all vulnerabilities were responsibly disclosed to Qualcomm

• https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin

28

https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin

29

Enough to achieve QSEE code execution!?

Secure Range tables

• Secure Range tables configure secure memory ranges

• Used by is_allowed_range() to check if a buffer is in REE memory

• One entry defines one contiguous range

• Identical to Qualcomm MSM8974 (see Gal Beniamini’s blog post)

30

ID flags

0x0 0x4

start end

0x8 0xC 0x10

Secure Range entry

http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html

Checking if buffer is allowed (i.e. is REE memory)

31

Return 0 if range is not

allowed.

Check if secure range is

enabled.

Enabled: flags[1] == 1

Disabled: flags[1] == 0

Return 1 if range is

allowed (i.e. no overlap

with secure memory).

(Non-)Secure Memory Map

• The following ranges are non-secure memory

• 0x8000_0000 to 0x87E7_FFFF

• 0x8800_0000 to 0x8FFF_FFFF

• The rest is secure memory (see picture)

• The entire 32-bit address space is covered

32

Three secure ranges

defined and enabled. QSEE

What if…

• The secure ranges table is stored in

writeable memory

• Set flags[1] bit to 0 for all entries,

all entries will be disabled

• Any range will be allowed…

33

34

Remember CVE-2020-11256?

Disabling a range entry (CVE-2020-11256)

• Use buf2 to write 0x1 to the flags

field in order to disable the entry

• Make sure buf1 contains a value that

prevents further writing to buf2

• i.e. is_allowed_range() should fail

35

36

Successfully opened up the attack surface!

“Open Sesame”

• The function is_allowed_range() will return 1

for any range (i.e. all entries are disabled)

• Any range check requested by aa SMC

handler routine becomes non-functional

• All SMC handler routines now accept

arguments that point to QSEE memory

37

Long story short…

38

Today, we are going to talk about something else…

Achieving QSEE code execution

Create a R/W

primitive using

multiple SMC

handler routines

Store shellcode

in non-secure

memory at

0x82000000

Modify the

MMU

configuration to

clear the XN-bit

Set the function

pointer used by

tzbsp_exec_smc

to 0x82000000

Execute the

shellcode by

calling

tzbsp_exec_smc

39

What if Qualcomm fixed all these vulnerabilities?

We modify software using a hardware vulnerability.

Fault Injection

“Introduce faults into a chip to alter its intended behavior.”

// check if secure boot is enabled
if(SECURE_BOOT_EN == 1) {

authenticate(&bootloader);
}

// execute the bootloader
execute(&bootloader);

// check if secure boot is enabled
if(SECURE_BOOT_EN == 1) {

authenticate(&bootloader);
}

// execute the bootloader
execute(&bootloader);

Electromagnetic Fault Injection (EMFI)

• Drive high voltage through a coil to

generate an electromagnetic field

• Emit this field into the chip to cause

‘eddy currents’ within the chip’s circuitry

• Faults occur due to ‘transistor errors’

41

https://byjus.com/physics/what-are-eddy-currents/

Chip (i.e. Qualcomm IPQ40xx)

https://byjus.com/physics/what-are-eddy-currents/

42

What tools do we use?

43

Riscure’s tools enable us to operate the setup autonomously

Setup (EMFI)

44

Note to self: make better pictures!

Setup (EMFI)

Characterization

• Goal is to test if the chip is vulnerable to glitches or not

• Identify good glitch parameters in a semi-controlled environment

• Glitch Location

• Glitch Power

• Repeat target instruction(s) to increase chances for success

• i.e. timing becomes less-relevant

45

Characterization – U-Boot Standalone Application

46

AAAA 00002710 BBBB Expected

<undef. instruction> Processor exception

<prefetch abort> Processor exception

<no output> Mute

AAAA 0000270f BBBB Success

AAAA 0000270e BBBB Success

Trigger up

Trigger down

Print counter

Increase counter

47

We fixed the EMFI probe on the red dot!

Characterization – Plot

Characterization – Conclusion

• We determined that the IPQ4019 is vulnerable to EMFI

• Modification of software is possible (i.e. instruction corruption)

• Same processor is used for U-Boot and QSEE

• Location we identified should be OK to target QSEE code

48

49

Let’s break into QSEE…

Approach

• Bypass a ‘secure range check’ in a SMC handler routine

• Disable ‘secure range table entry’ in memory

• To disable all ‘secure range checks’ of other SMC handler routines

• Reuse software exploit to achieve code execution

50

51

Goal is to ‘modify’ the if statement

Bypassing Range Check – Target #1

Write 0 to

anywhere

(including QSEE

memory)

52

There’s more…

53

Goal is to ‘somehow’ return 1 instead of 0

Bypassing Range Check – Target #2

54

This is just from decompiled code…
(disassembly likely shows even more possibilities)

We don’t care what we glitch exactly…

Many, many ‘vulnerable’ locations.

U-Boot Standalone Application

55

Trigger up

Trigger down

Target

Verification

We are able to read

from QSEE memory

due to a MMU

misconfiguration…

convenient for

verification.

Location of flags

field of secure

range entry.

Print values

Bypassing Range Check – Reponses

AAAA ffffffee ffffffee 00000002 BBBB Expected

56

Ret1 Ret2 Flag

AAAA 00000000 00000000 00000000 BBBB Success

...

Timing is key

57

Attack Window

Trigger

up

Trigger

down

Bypassing Range Check – Plot

58

Successful

glitches

G
li
tc

h
 P

o
w

e
r

Glitch Delay

59

When we set the Glitch Delay and Glitch Power as a successful glitch we achieve

a success rate of 5% (i.e. a bypass of a Range Check every ~20 seconds).

Bypassing Range Check – Increasing success rate

60

Achieving QSEE code execution…

We use FIRM to discuss FI attacks.

Fault Injection Fault Model (FIRM)

https://raelize.com/posts/raelize-fi-reference-model/

‘Modifying Secure Range Table Entry’

https://raelize.com/posts/raelize-fi-reference-model/

62

Then…

63

… to achieve arbitrary code execution.

Reuse same software exploit…

Create a R/W

primitive using

multiple SMC

handler routines

Store shellcode

in non-secure

memory at

0x82000000

Modify the

MMU

configuration to

clear the XN-bit

Set the function

pointer used by

tzbsp_exec_smc

to 0x82000000

Execute the

shellcode by

calling

tzbsp_exec_smc

Let’s wrap up.

64

Takeaways

• Multiple critical vulnerabilities in QSEE (for IPQ40xx-based devices)

• These were fixed trivially as it’s software

• Qualcomm IPQ40xx-based devices are vulnerable to EMFI forever

• This hardware vulnerability won’t be fixed

• Physical access gives full device control

• Targeting code instead of ARM TrustZone HW primitives is effective

• No need to target the NS-bit like others have done in the past

• Software exploits can be reused effectively during FI attacks

65

More details about our research:
https://raelize.com/blog

66

https://raelize.com/blog

Q&A

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

67

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

