SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with
snapshot-assisted-driven
comparison branches analysis

Kijong Son
KISA

About me

Kijong Son

Security researcher @ KISA

Penetration testing Instructor
* Jeaching courses

Past Experiences
* Penetration tester for 10+ years
* Bug bounty program management

Focusing on vulnerability and exploitation research

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Agenda

Motivation

Introducing LightBranch

Snapshot mechanism for input generation

How we analyze comparison branches

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

DEMO

SECCONF

AMSTERDAM - 2021

Motivation

Fuzzer tend to get stuck in the input validation code.

Need to generate feedback information to guide fuzzer

Time consuming to manually make a input dictionary.
 Some mutation-based fuzzer supports user-supplied dictionaries
* ButIn order to make a dictionary, It requires manual effort

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Automatic valid input generation for fuzzing

SECCONF

AMSTERDAM - 2021

Random | Feedback

american fuzzy lop 2.52b (8000) american fuzzy lop 2.52b (8000)

0 days, 1 hrs, © min, 0 sec days, 0 hrs, min, 34
none yet days, 0 hrs, min, 34
none seen yet days, © hrs, min, 16
none seen yet days, 0 hrs, min, 26

0 (0.00%) (0.00%)

o (0.00%) 1.00 bits/tuple (0.00%) 1.00 bits/tuple

havoc 1 (100.00%) splice 13 2 (100.00%)
210/256 (82.03%) 1 (100.00%) 20/32 (62.50%) 2 (100.00%)
5.35M 0 (0 unique) 35.8k

1503 /sec 7 (5 unique) 1060/sec 4 (1 unique)

/32, 0/31, 0/29 0/96, 0/94, 0/90
0/4, 0/3, 01 e/12, 0/16 al/s
ot Random mutation 85%10%3 Feedback guided mutation
0/6, 0/0, 6/0 /2, 1/12, 0/0
©/5.35M, 0/0 0/13.6k, 1/20.5k
66.67%/2, 0.00% 45.45%/4, 0.00%
e sl

[+] We're done here. Have a nice day! [+] We're done here. Have a nice day!
#include<stdio.h>

void vuln(char *buf) {
char arr[64] = {0};
strcpy(arr,buf);
return;

}

void main() {
char buf[1337] = {0};
char *str = "findme"; .
cead(_buf sizeof(huf))s Comparison branch
if(!strncmp(str, buf,6)) {
printf("correct! go to vuln function!\n");
vuln(buf);

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis T

Interesting inputs

* Pre-defined Inputs that are required by program
e Option, Command
e File format

* Protocol spec

* They tends to be compared at the front end of a program

* Play a big role in detecting new path during fuzzing

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Input generation

Make a dictionary file

Symbolic / Concolic execution

Collect seed templates from web crawling

Static/Dynamic binary or source code analysis

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Our approach

Input learning with snapshot based comparison branches analysis

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

LightBranch Design

* LightBranch consists of three major components
* (1) Dynamic CFG Constructor, (2) Taint analysis, (3) Branch analysis

Target binary

N

DBI Tool | Instrumentation

SECCONF

'AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Why snapshot?

e Skip over unnecessary process startup code

e Execute both directions of conditional branch

* Extend taint propagation coverage

* More access to comparison branch with in-memory processing

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Snapshotting with Dynamic CFG

 (Generate dynamic control flow graph nodes

* Only conditional branch’s basic block is treated as node

 Each node represents a snapshot. It has a snapshot information

* Restoring a snapshot by referencing graph nodes

Managing snapshot and restore scheduling

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Node container internals

e Snapshot repository

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Execution Context

Memory Status

Taint Information

Node container #1

Execution
context

Memory status

Taint info

Node container #n

Execution
context

Memory status

Taint info

A g R——

SECCONF

AMSTERDAM - 2021

Snapshot creation flow

Instrument head instruction of conditional branch’s basic block

Take a snapshot of runtime state of conditional branch

Create node container to save snapshot information

Manage all snapshots with CFG tree

Restore snapshot under predefined conditions

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Restore snapshot

* The key idea for restoring snapshot is to detect leaf node.

* Leaf node that doesn't have child node o
* The end address of main function

* Program exit functions are called

* Exception signals are generated o o o 0

50006060)

SECCONF

AMSTERDAM - 2021

* |nvalid instructions

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Restore location

 Where is destination address for restoring?
* The head of conditional branch’s basic block

MoV ecx, eax “—— Head of conditional branch

cmp ecx, ebx
J7 loc 456712

Restore
register, taint
and memory state

cmp eax, ebx
Jzloc_465735

add eax, ebx
jmp loc_456812

mov eax, ebx

) Leaf node
call exit()

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis TR

Snapshot rules

 Doesn’t take a snapshot for first basic block right after restoring

* The restored node is deleted from the node list

* (optional) Set depth of the deepest node level

* (optional) Allow the redundant snapshot mode

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Memory snapshot

* Instrument the memory-writing instructions on trace level

* Preserve the original value of memory before writing
* From the beginning of each conditional branch to right before being restored

* Save memory snapshot on each node container

* Memory snapshot rule
e |f avalue is written to the same address multiple times,
record only first original value in same node

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Tree traversal for restore

* There are 2 cases of snapshot tree traversal

Bottom Up Restore Top Down Restore

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis e

Control flow hijacking

* Check current flag register and then determine the jump direction

31302928272626242322212019181716161413121110 9 8 7 6 6 4 3 2 1 0

oF s |z | |:| FLAGS Register

Instructions Flags Instructions Flags

Jo OF =1 JA JNBE CF=0andZF=0
JNO OF=0 JLINGE SF () OF

s SF=1 JGE JNL SF = OF | explored Jump direction l
JNS SF=0 JLE JNG ZF = 10r SF () OF

JEJZ ZF=1 JG INLE ZF = 0 and SF = OF

JNE INZ ZF=0 JP JPE PE=1

JB JNAE JC CF=1 JNP JPO PF=0

JNB JAE JNC CF=0 JOE JECKZ 33%?5:00

JBE JNA CF=1orZF=1

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis T

Validation check

Read or Write Memory access
* Collect address ranges from /proc/[PID]/maps file
* Update address ranges because of dynamic memory allocation
* Check invalid memory access

Indirect call address
(et aregister value and check if address is in code sections

Null point access

Double free and invalid free pointer

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Snapshot for loop body

* Loop detection
 Backward jump to address
* Also check if jump address is greater than function’s start address

* (optional) Set loop lteration threshold to escape loop
* Jo avoid unnecessary loop iteration
 Count the number of execution times of backward jump
* Restore snapshot if the threshold is reached

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Comparison branch

 Compare with two operands and then jump somewhere

iflcomparison_is_true){ switch(expression) {
' case <
do_something; |
do_something
} case v
clsel do_something
do_something; default:
] do_something;
)

e Use Cases : Single branch, Nested branches, Branch in the loop

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Input-dependency branch

* Dynamic taint propagation

Input-dependency

add edx, 1

[

char out[256];
char in[2000];

read(9, in, 2000);

d if(strcmp(in, “value”) == 0)
: {
// strcpy(out, buf);

} else{

. SECCONF
LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis e

Marking tainted node

e Tainted node in snapshot tree

‘ Tainted Node

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Extract comparison value

* Instrument compare instructions and functions
* CMP and TEST assembly instruction

e cmp, cmps, cmpsb, cmpsw, cmpsd, cmpsa, test

* Repeat prefix instruction set(repe, repz, repne, repnz)
e CMPSB, CMPSW, CMPSD, SCASB, SCASW, SCASD can be preceded by the rep prefix
* Repeat execution of string instruction the number of times specified in counter register

e *cmp library functions
* memcmp
e strcmp family

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Extract comparison value

|dentify location which actually has comparison value.

* Which operands are tainted at comparison time
* We need to identify non-tainted operand cmp EAX, dword ptr[EBP]
[(EEey]
. : !
* Check operand type of ‘non-tainted’ operand Check Check

Register Memory

* Register, memory and immediate value

Extract value of non-tainted operand according to type
» CMP = Get register, memory or immediate value et S
* Rep prefix = Get memory(RAX, RDI, RSl) with ECX
* *cmp function » Get argument

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis e

Support

* In Scope
* Raw value of target operand

int [dcr_cnlj](LHﬂ.SH_OF(FUNCTION) *prog, int argc, char *argv[])

FUNCTION f, |*fp;
argc <= o argv[0] == NULL
* Out of Scope

f.name = argv[@];

» Compare it with transformed input e i
. (EV’F’_gef_rji;gestbj,fname(ar‘gv[i{i-]:) { 1. Getdigest module object
* Dynamically encoded or encrypted £.type = FT_nd; only by user input

f.func = dgst_main;

* And there is no original of comparison value | fe-

(EVP_get cipherbyname(argv[8])) {
f.type = FT_cipher;

* No comparison target value £.func - enc_ain;
* Get function pointer only by user input ,

(fp 1= nuLL)
fp-»func(argc, argv);

(It doesn’t compare)

2. Call func pointer of digest
(jump to the new path)

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis TR

Comparison of values from offset

e Extract the offset of ‘tainted’ operand

* [Forthat, check whether tainted operand uses index addressing before comparison

* Type of offset
* Indirect offset = Index register
 Direct offset = Constant, Immediate value

* Offset type is determined at compile time

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

if(Istrncmp(input[10], “conf", 4)) { something; }

/*

push 0x4

push 0x80485d0 ; ‘conf

lea eax,[ebp-0x48]

add eax, Oxa ; add addressing
push eax

call 0x8048380 <strncmp@plt>

add esp,0x10

test eax, eax

jne 0x804853e <main+115>

*/

SECCONF

AMSTERDAM - 2021

How we extract offset

* Use Backward taint analysis from tainted branch

 Which operands are tainted?

* Check the index addressing modes at a nearby basic blocks
e Stack addressing, indirect/direct addressing, displacement addressing

e Extract offset value of “tainted” operand

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Byte sequencing

ldentifying one byte character in the output

Sort in ascending order of instruction addresses that was extracted

Check offset value to concatenate byte strings

Represent a sequence of bytes

Save string to dictionary file

SECCONF

AMSTERDAM - 2021

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis

Fuzzing with LightBranch

Snapshot engine

Target Binary
» | Input function identifier Fuzzing
Initial Seed
Dynamic taint analysis Vulnerability detection
Send i Request »@ Test case generation
taint | taint |
Comparison Branch analysis monitoring
!
DRTEETIIE FEL Analyzing result

Generate input

SECCONF

LigthBranch : Binary fuzzing with snapshot-assisted-driven comparison branches analysis e

AMSTERDAM - 2021

Thank You

For your attention

' SECCONF

AMSTERDAM - 2021

