

Insecure Link : Security Analysis and Practical Attacks of LPWAN

Li YuXiang & Wu HuiYu Tencent Blade Team

About US

Li YuXiang (@Xbalien29)

Senior security researcher at Tencent Blade Team. Focusing on mobile security and IoT security. Reported multiple vulnerabilities of Chrome & Android. Speaker of BlackHat USA, DEFCON 27, CanSecWest, HITB AMS 2018.

Wu HuiYu (@NickyWu_)

Senior security researcher at Tencent Blade Team. Mainly focusing on AIoT security research. Bug hunter, Winner of GeekPwn 2015 & 2020, and speaker of Black Hat USA, DEFCON, HITB, CanSecWest and POC.

About Tencent Blade Team

- Founded by Tencent Security Platform Department in 2017
- Focus on security research in the areas of AIoT and Cloud virtualization
- Report 200+ vulnerabilities to vendors such as Google, Apple, Microsoft, Amazon
- More about us : https://blade.tencent.com

Agenda

- Introduction to LPWAN Supply Chain
- New Security Risks of LoRaWAN and Our Practice
- Security Internal of NB-IoT
- Security Advice

What is LPWAN

• LPWAN (Low Power Wide Area Network)

Low power and low bit rate for long-distance communication.

- Mainstream LPWAN technology
 - LoRa, NB-IoT, sigfox...
- Application Scenarios

The Motivation of Our Work

• LPWAN Market Share Trends

● LoRa ● Sigfox ● NB-IoT ● LTE-M ● Other

LoRa/LoRaWAN

- LoRa (Long Range) is a proprietary low-power wide-area network modulation technique. It is based on spread spectrum modulation techniques derived from chirp spread spectrum (CSS) technology
- It use unlicensed frequency bands, such as 470, 868, 915 MHz, which can independently build gateways and core networks
- LoRaWAN is a cloud-based medium access control (MAC) layer protocol but acts mainly as a network layer protocol for managing communication between LPWAN gateways and endnode devices as a routing protocol, maintained by the LoRa Alliance.

NB-IoT

- NB-IoT is a new IoT technology set up by 3GPP as a part of Release 13. Although it is integrated into the LTE standard, it can be regarded as a new air interface.
- It uses the licensed frequency bands, which are the same frequency numbers used in LTE, and employs QPSK modulation.
- There are different frequency band deployments, which are stand-alone, guard-band, and in-band deployment

LPWAN Supply Chain

Cloud

Telecom Operator

LoRaWAN vs NB-IoT

• Technical Characteristics

Technology Parameters	LoRaWAN	NB-IoT
Bandwidth	125 kHz	180 kHz
Coverage	165 dB	164 dB
Battery Life	15+ years	10+ years
Peak Current	32 mA	120 mA
Sleep Current	1μΑ	5μΑ
Throughput	50 Kbps	60 Kbps
Latency	Device Class Dependent	< 10 s
Security	AES 128 bit	3GPP (128 to 256 bit)
Geolocation	Yes (TDOA)	Yes (in 3GPP Rel 14)
Cost Efficiency (Device and Network)	High	Medium
		Source: ABI Research

LoRaWAN vs NB-IoT

• Network Architecture

LoRaWAN Protocol V1.0.3

The Key to the LoRaWAN Protocol V1.0.3

- The security basis of the protocol: AES (encryption, integrity)
 - AppKey : stored in the node and server, used to generate the session key
 - NwkSKey/AppSKey : Session key, used for encryption, decryption and MIC verification
- End-Device Activation
 - ABP : Node and server settings NwkSKey, AppSKey (will not change during the life cycle)
 - OTAA : Key negotiation process in which the session key is generated by AppKey

Previous Security Research

- LoRaWAN
 - Security issues of the specification (v1.0.3) > Fixed by v1.1 of the specification
 - Security risks of LoRanWAN deployment > Improve Vendors's security awareness
- NB-IoT
 - There are few studies, most of which is survey or theory

Security Risks of LoRaWAN Devices in the Real World

- Some vendors have security solutions
 - Random key / one-machine-one-key
 - Security specification for hardware
- Another part of vendors has weak security awareness
 - Use the same AppKey or a well-known AppKey
 - The AppKey is easy to guess or displayed on the device shell
 - The debug port is exposed or the firmware can be read

LoRaDawn: New Security Risks of LoRaWAN and Our Practice

- Technology Implementation in the Real World
- Attack Surface of LoRaWAN Supply Chain
- Our Practice

Open Source Implementation in LoRaWAN Supply Chain

- LoRaWAN Nodes
 - LoRaMac-node: <u>https://github.com/Lora-net/LoRaMac-node</u>
- LoRaWAN Gateways
 - Packet_forwarder: <u>https://github.com/Lora-net/packet_forwarder</u>
 - Basicstation: <u>https://github.com/lorabasics/basicstation</u>
- LoRaWAN Servers
 - Chirpstack: <u>https://github.com/brocaar</u>
 - TTN: <u>https://github.com/TheThingsNetwork/lorawan-stack</u>

Architecture of LoRaWAN Nodes

Architecture of LoRaWAN Gateways

- Packet Forwarder (Bridge between node and server)
 - packet_forwarder,basicstation,mqtt, etc.
- Linux as OS, It's a router

Architecture of LoRaWAN Network Server

Attack Surface of LoRaWAN Supply Chain

- Nodes
 - Vulnerabilities in the LoRaMac-Node, affecting a wide range of.
- Gateways
 - Security risks of different Packet Forwarder.
- Servers
 - Risk of abusing the default configuration.
 - Security issues of open source code.

- LoRaWAN end-device stack implementation released by Semtech
- CVE-2020-11068
 - The vulnerability exists in the process of OTAA, which can cause harm to the devices that are joining the network.
 - For deployed projects, it is necessary to rejoin the network, which needs to be combined with other attack methods.
 @@ -997,6 +997,13 @@ static void ProcessRadioRxDone(void)

Advantage: No need to know the AppKey

Fixed in version 4.4.4.

	@@ -997,6 +997,13 @@ static void ProcessRadioRxDone(void)	
997	<pre>switch(macHdr.Bits.MType)</pre>	
998	{	
999	<pre>case FRAME_TYPE_JOIN_ACCEPT:</pre>	
1000	+ // Check if the received frame size is valid	
1001	+ if(size < LORAMAC_JOIN_ACCEPT_FRAME_MIN_SIZE)	
1002	+ {	
L003	+ MacCtx.McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;	
1004	+ PrepareRxDoneAbort();	
L005	+ return;	ECCONF
1006	+ }	DAM - 2021
L007	<pre>macMsgJoinAccept.Buffer = payload;</pre>	
1008	<pre>macMsgJoinAccept.BufSize = size;</pre>	

- How to send radio packets to nodes
 - Receive Windows of CLASS-A end-devices [REVEIVE_DELAY1 = 1, JOIN_DELAY1 = 5]
 - Regional downlink channel [CN470-RX1 Channel Number = Uplink Channel Number modulo 48]

- Debug
 - Hardware : P-NUCLEO-LRWAN1
 - STLINK-Debugs
 - MCU (LoRaMac-node)
 - Expansion board (SX1272MB2DAS,SX1276MB2DAS
 - Software : IMPL + DEBUG Tools
 - STM32CubeExpansion+ Keil
 - LoRaMac-Node + (VS CODE + openocd)

NUCLEO-L073RZ

• Our Practice

- **1.** The victim sends OTAA packet 7. Device dropped or restarted
- 3. Notify the local server.
- 6. Send malicious radio to the victim
- 5. Send malicious data to hijacker

Security Analysis of LoRa Basics[™] Station

- New state-of-the-art gateway packet-forwarder
 - CUPS: custom update protocol, LNS: Websocket + Json to LoRaWAN® Network Server

BasicStation – CUPS Request	BasicStation — LNS Protocol
Station CUPS	Station LNS Discovery LNS Data
	Discovery WSS /router-info > <router></router>
Update CUPS credentials Update LNS credentials Verify / Execute Upgrade	Config WSS /router- <id> > <version> > <</version></id>
	Uplink updf>
	Downlink <

Security Analysis of LoRa Basics[™] Station

- Attack surface [Man-in-the-middle hijacking or malicious server]
 - Does not force the authentication mode to be enabled
 - The risk of LNS capacity abuse: Remote code execution
 - CUPS has memory corruption vulnerability(CVE-2020-4060) and logic vulnerability

Security Analysis of LoRa Basics[™] Station

• The risk of LNS capacity abuse

client->server ws://x.x.x:1234/router-info
{"router":"b827:ebff:fe67:c526"}

server->client {"router":"b827:ebff:fe67:c526","muxs":"muxs-::0","uri":"ws://x.x.x:1234/traffic/eui-B827EBFFFE67C526"}

client->server ws://x.x.x:1234/traffic/eui-B827EBFFE67C526 {"msgtype":"version","station":"2.0.3(rpi/std)","firmware":null,"package" :null,"model":"rpi","protocol":2,"features":"rmtsh"}

server->client Send downlink data and execute malicious commands.
{"msgtype": "runcmd","command":"touch pwn.txt","arguments":
["pwn.txt"]}

Remote Commands

Stations support two mechanisms for running remote commands on the gateway:

"msgtype" : "runcmd" "command" : STRING, "arguments": [STRING, ...] int sys_execCommand (ustime_t max_wait, str_t* argv) { int argc = 0; while(argv[argc]) argc++; if(argc == 0 || (argc==1 && argv[0][0]==0)) return 0; sys_flushLog(); pid t pid1; if((pid1 = fork()) == 0) { pid_t pid2 = 0;if(max_wait!=0 || (pid2 = fork()) == 0) { if(access(argv[0], X_OK) != 0) { // Not an executable file str_t* argv2 = rt_mallocN(str_t, argc+3); memcpy(&argv2[3], &argv[0], sizeof(argv[0])*(argc+1)); // also copy tr if(access(argv[0], F OK) == -1) { // Not even a file - assume shell statements argv2[0] = "/bin/sh"; argv2[1] = "-c";

argv2[2] = argv[0]; argv = argv2; - 2021

Chirpstack: Risk of Abusing the Default Configuration

- Default weak password (No mandatory user settings)
 - Database, Application Server WEB
- No authentication by default
 - MQTT, gRPC

Chirpstack: Risk of Abusing the Default Configuration

- MQTT integration (User password and ACL optional)
 - Steal the upstream and downstream data of the device
 - Fake scheduling downlink

application/1/device/343235376e387f18/rx {"applicationID":"1","applicationName":"First_application","deviceName":"RAK811_LoraNode","devEUI":"343235376e387f18","rxInfo":[{"gatewayID":"b827ebfffe67c526","uplinkID":"72ab3e7c-79ec-408c-8ab6-1a8e66dfcd58","name":"TTN_GW","rssi":-37,"loRaSNR":13,"location":{"latitude":0,"longitude":0,"altitud e":0}},{"gatewayID":"b827ebfffe67c526","uplinkID":"cd89d034-e292-4e57-a423-073bfa33cdc4","name":"TTN_GW","rssi":-89,"loRaSNR":-6.2,"location":{"latitude":0,"longitude":0, "altitude":0}},{"gatewayID":"b827ebfffe67c526","uplinkID":"cd89d034-e292-4e57-a423-073bfa33cdc4","name":"TTN_GW","rssi":-89,"loRaSNR":-6.2,"location":{"latitude":0,"longitude":0 ,"altitude":0}},{"gatewayID":"b827ebfffe67c526","uplinkID":"03506bbf-d491-42de-885c-badd01a0df2b","name":"TTN_GW","rssi":-88,"loRaSNR":-8.8,"location":{"latitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0,"longitude":0 gitude":0,"altitude":0}],"txInfo":{"frequency":486700000,"dr":0},"adr":true,"fCnt":4,"fPort":2,"data":"QkJCQkJCQkI="} gateway/b827ebfffe67c526/command/down

[LoRa]: RUI_MCPS_UNCONFIRMED send success root@vultr:~# mosquitto_pub -t "application/1/device/343235376e387f18/tx" -m "{\"confirmed\": tr	rue,\"data\": \"SGVsbG8=	
OK		
at+recv=0,-117,186,0 root@vultr: # mosquitto_pub -t "application/1/device/343235376e387f18/tx" -m "{\"confirmed\: tr	rue,\"data\": \"SGVsbG8=	
at+send=lora:2:4242424242424242 root@vultr: #		
[LoRa]: RUI_MCPS_UNCONFIRMED send success	25	
ок	26	
at+recv=10,-117,191,548656c6c6f hello	27	
	28	
v	29	ITRGECCON
发送窗口(默认发送回车)	30	
at+send=lora;2;424242424242424242		AMSTERDAM - 2021

lorawan-stack : Security issues of open source code

• UDP parsing error

• nil panic (Sending UDP leads to denial of service)

Security Internal of NB-IoT

- Technology Implementation in the Real World
- Attack Surface of NB-IoT
- Our Practice

Overview of NB-IoT

- SOC: High Integration
 - Different architectures/ RTOS
- Complex protocol stack
 - NB-IOT PHY + LTE AS/NAS
 - TCP/IP + APPS
- EPC/eNB/IoT Cloud Platform
 - Black box

Architecture of NB-IoT Chip (A)

•

Architecture of NB-IoT Chip (B)

Attack Surface of NB-IoT Module

• APPS

- at_cmd_handler
- LWM2M
 - object_function
- CoAP / MQTT / HTTP?
- TCP/IP
 - lwip .etc

• NAS

- ESM, EMM
- RRC
 - MIB, SIBx
- Inter-Core Communication

Our Practice

• LOG for debugging

lessages	Filter	default -	View:	default	•
NAS					X
Index	Time	Message			
26519	13:21.593315	NAS_DBG_NAS_MSG			
29077	13:43.307945	NAS_DBG_TIMER			
29225	13:43.912925	NAS_DBG_TIMER			
29228	13:43.913200	NAS_DBG_TIMER			
29850	13:53.937686	NAS_DBG_STATE_INFO			
29856	13:53.938480	NAS_LOG_EMMSM_INFO			
29858	13:53.938632	NAS_DBG_STATE_INFO			
29864	13:53.939304	NAS_DBG_TIMER			

	Record Number 1258		
	TaskIdTag	directives.source	= !UNKNOWN_ENUMERATION! 0x0001 ;
ErrcDebugCellListInd	TaskIdTag	directives.dest	= TASK_BL_ID 0x0507 ;
NphyLppEcidMeasCnf	unsigned long	frameNumber	= 0x000004e5 1253;
ApexMmRssiInd	unsigned long	time	= 0x000380a7 229543 ;
ApexMmRssiInd	unsigned short	length	= 0x00fc 252;
An and Man De cai Tand	Signalidiag	1d	= SIG NPHY LPP ECID MEAS CNF 0x00031816 ;
Apeximissiind	NpnyLppErrorCauselag	pody.npnyLppLcidMeasChi.errorCause	= !UNKNOWN_ENUMERATION! UXAI ;
NphyPlmnSearchReq	unsigned short	.primaryCellResults.pci	= 0x00000 0;
ErrcCellSelectInd	unsigned long	.primaryCellResults.earich	= 0x000005ad 1453;
MmdbmSuspendInd	unsigned char	.primarycelikesults.SINPresent	= 0x000 0;
Nnhy DimnSearch Ind	aigned short	.primarycelikesults.sin	- 0x0000 0;
NphyFilmSearching	signed short	.primaryCellResults.nrsrp	= 0x05ad 1453;
ErrcMasterInformationBlockNb	NebuFarforOffactTag	.primarycellResults.hrsrq	- NEW FARECH OFFERT UNWNOWN 0.00 .
ErrcDebugAsnlMessageInd	wpsigned char	primaryCellRegults_bSfpBresent	= 0v01 1 ·
ErrcSystemInformationBlockTypelNb	unsigned char	primaryCellResults.hSinfleSent	$= 0 \times 0076$ 118 ·
ErrcDebugAsplMessageInd	unsigned char	nnhuInnEcidMaseCnf numMaseuradDaeulte	$= 0 \times 90$ 153 ·
Europepagnoninessagerna Europepagnoninessagerna	unsigned short	nphyLopEcidMeasCnf cellResults[0] nci	$= 0 \times 001d$ 29 :
ErrcSysteminiormationND	unsigned long	cellResults[0] earfcn	= 0x00010000 65536 ·
ErrcDebugAsnlMessageInd	unsigned char	.cellResults[0].sfnPresent	= 0xe6 230 :
NphyIdleConfigNeededInd	unsigned short	.nphyLppEcidMeasCnf.cellResults[0].sfn	$= 0 \times ff 9 = 65438$:
NphyConnectedConfigReg	signed short	.nphyLppEcidMeasCnf.cellResults[0].nrsrp	$= 0 \times 0000 \qquad 0$;
FrrcDebugStateChangeInd	signed char	.nphyLppEcidMeasCnf.cellResults[0].nrsrg	= 0x22 34 ;
ElicbebugStateonangelind	NphyEarfcnOffsetTag	.cellResults[0].earfcnOffset	= NPHY EARFCN OFFSET UNKNOWN 0x00 ;
NphySignalLevelind	unsigned char	.cellResults[0].hSfnPresent	= 0x9e 158 ;
ErrcCellSelectInd	unsigned short	.nphyLppEcidMeasCnf.cellResults[0].hSfn	= 0x0000 0 ;
MmdbmBearerStatusInd	unsigned short	.nphyLppEcidMeasCnf.cellResults[1].pci	= 0x0000 0 ;
ErrcUpdateReg	unsigned long	.cellResults[1].earfcn	= 0x00000000 0 ;
MmdbmBesumeInd	unsigned char	.cellResults[1].sfnPresent	= 0x00 0 ;
	unsigned short	.nphyLppEcidMeasCnf.cellResults[1].sfn	= 0x8000 32768 ;
MmSimWriteDataReq	signed short	.nphyLppEcidMeasCnf.cellResults[1].nrsrp	= 0x0000 0 ;
MmSimWriteDataCnf	signed char	.nphyLppEcidMeasCnf.cellResults[1].nrsrq	= 0x00 0 ;
NphyLppEcidMeasCnf	NphyEarfcnOffsetTag	.cellResults[1].earfcnOffset	= NPHY EARFCN OFFSET UNKNOWN 0x00 ;

Our Practice

- Testing
 - Raspberry Pie + EC20 + IoT SIM
 - USRP + TEST SIM

Security Advise

- LoRaWAN
 - Node: adopt the latest version of the protocol stack
 - Gateway: use authentication or encryption mechanism
 - Server: Clear weak passwords, enable authentication, open ports require data verification

Security Advise

- NB-IoT
 - Node:
 - Update the firmware or third-party library in time
 - Use DTLS or MQTT TLS to communicate with IoT cloud platform
 - EPC: Operators restrict network access policy

Thank You

blade@tencent.com

