
Fuzzing the MCU of
Connected Vehicle for
Security and Safety

Hao Chen- Security Expert – Li Auto

About Me

Hao Chen(@flankersky)

- Security Expert @Li Auto

- Bug hunting in Android, Linux kernel

- Connected Car Security & Hardware Security Newbie

Overview

◼ BackGround

◼ McuFuzz Design

◼ McuFuzz Demo

◼ Conclusion

BackGround

BackGround - The usual attack vector

https://www.researchgate.net/figure/Possible-evolution-of-vehicular-E-E-architectures-3_fig1_348825146

BackGround - The usual attack vector

Central Gateway

DCU2

(ADAS)

DCU1

(HMI)

DCU3

(Powertrain/

chasis)

WiFi

5G

Bluetooth

Radar

Lidar

Camera

ESP

AEB

EPS

The Powertrain/chasis Domain:

⚫ Hacker’s ultimate goal

⚫ Safety Critical

⚫ Security Critical

BackGround – Security vs Safety(software)

Code BUG

Random

trigger

Intention

al trigger

fault error failure Hazard

Vulnerability Threat

Attack

Security event

ACCIDENT

Security

Safety:Absence of unreasonable risk due to hazards caused

by malfunctioning behavior of E/E systems

BackGround -Current MCU software Test

● Code Walk-through
● Semi-formal verification
● Formal verification
● Interface test
● Unit test
● Fault injection test
● Static code analysis
● Data flow analysis

● statement coverage

● branch coverage

● MC/DC

There are never enough ways to test.

Coverage-guided fuzzing maybe helpful.

The Mcu Fuzzing

McuFuzz – What we have & need

Resources of a processor for Vehicles
• Up to 3x Arm Cortex-M7 DCLS
• Up to 8 MB SRAM
• Runing AUTOSAR or FreeRTOS

What’s the problem
• SRAM is really small
• real-time OS, no MMU
• Gcc or Clang are rarely used

◆ How to trace memory access

◆ How to trace code coverage

Hardware Assisted

Coverage

guided?

Solution

McuFuzz - Introduction to ARM Trace

Cortex-A/-R/-M

Embedded Trace

Macrocell(ETM)

System Trace

Macrocell(STM)

AHB Trace

Macrocell(HTM)

Funnel

Trace Sink

Program Flow Data Flow

Trace

Sources

https://developer.arm.com/documentation/dgi0012/d/CoreSight-Components-and-Systems/CoreSight-components/Trace-sources

Instrumentation

Trace

Macrocell (ITM)

McuFuzz – ETM on-chip trace

https://developer.arm.com/documentation/102119/latest/

• The trace data is on chip and is exported to the

external debugger.

• The on-chip buffer is usually small.

• You allways need filtering.

• The trace data is heavily compressed.

• Capture trace at a much higher speed.

• Do not require any trace pins,JTAG is enough.

McuFuzz – ETM off-chip trace

https://developer.arm.com/documentation/dgi0012/d/Trace-Capture/Designing-your-trace-system/Differences-

between-on-chip-and-off-chip-storage

• The trace data is output from the target to a debug unit or

directly to the external debugger.

• Trace data is output by the Trace Port Interface Unit (TPIU),

Embedded Trace Streamer (ETS), or Serial Wire Output

(SWO) that is on the target to an external debugger.

• We can have more buffer to store trace data.

• We can trace over a long period.

• But it need additional hardware pins.

McuFuzz - ETM‘s features Summary

• A trace source,part of ARM coresight

• Instruction and data trace

• ETM supports trace filtering

• Can generate cycle-accurate trace

• Can insert timestamps into trace data

• Support on-chip and off-chip trace

• Supported in most Arm-based systems

McuFuzz– Use Trace32 to trace

• PowerView, a universal GUI

• PowerDebug tools for debugging

• PowerTrace tools for program/data
flow trace

• Support Cortex-A/-R/-M, TriCore,
RISC-V, Power Architecture

https://www.lauterbach.com/frames.html?home.html

McuFuzz – Trace32: Enable ETM

https://www2.lauterbach.com/pdf/trace_arm_etm.pdf

◆ Trace method

Trace sink is on-chip buffer

◆ On-chip trace buffer
Trace buffer usage status

Fifo mode: If the trace is full, new records will overwrite

older records.

◆ AutoInit
• Trace memory contents is erased and previous records

are no longer visible

• The trigger unit is set to its initial state.

◆ AutoArm
• Recording and if available triggering is prepared whenever

the program execution is started.

• Recording and if available triggering is stopped whenever

the program execution is stopped.

◆ ETM

①

②

③

④

McuFuzz – ETM trace filter

● Code Filter example
ETM.TraceInclude Execute 0x34000000-- 0x34000fff 0x35000000-- 0x35000fff

● Memory access filter example
ETM.DataViewInclude ReadWrite 0x60000000--0x61ffffff

McuFuzz – The coverage result

Coverage show:

https://www2.lauterbach.com/pdf/app_code_coverage.pdf

This will slow down the fuzzing speed.

McuFuzz – Trace32 API

https://www2.lauterbach.com/pdf/api_remote_c.pdf

https://www2.lauterbach.com/pdf/api_remote_c.pdf

McuFuzz– The mcu fuzzing framework

AFL

Trace Decode

Core0

Trace Collect
ETM with

filter

Trace32

Debug

Target Control

& Monitor

TestCase

①

②

①

④

② ③

③

① ②

McuFuzz – The advantages

● Compiler independent

● No need to recompile code

● No code instrumentation required

● Coverage-guided

Demo

Demo – Can service Fuzzing

Trace32

PowerDebug

Target MCU

USBCAN Device

• Control Target：
Run,break,configure ETM

• Get ETM analyzed data

• Monitor crash

• Collect init seed

corpus

• Send mutated data

to target

Demo - Can service Fuzzing

Conclusion

Conclusion

◆ Coverage guided fuzzing on MCU is possible

◆ ETM and Trace32 is really helpfull

◆ This prototype is proven effective in our product

Future works:

◆ Improve fuzzing speed

◆ More target fuzzing practice

◆ Off-chip trace is in progress

https://github.com/flankersky/mcufuzz

flank3rsky@gmail.com

https://github.com/flankersky/mcufuzz

Thank You!

