
SRLabs Template v12

Corporate Design

2016

EDR Evasion Primer
Hack-in-the-Box, Singapore, Aug 25, 2022

Jorge Gimenez <jorge@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

Das Logo Horizontal

— Pos / Neg

3

Today, we talk about circumventing Endpoint Detection & Response (EDR) systems

2

How EDRs work

Effective techniques to
circumvent them

How to compensate for
EDR protection gaps

§ We are not the first to look at EDR
evasion. Plenty of information is
available online, including on the
techniques presented herein

§ Check out this paper for a summary
and references:
www.mdpi.com/2624-800X/1/3/21

Related workAgenda

http://www.mdpi.com/2624-800X/1/3/21

Das Logo Horizontal

— Pos / Neg

3

Nice to meet you :)

3

Jorge Gimenez

Red Teamer

Security
Researcher at
SRLabs

Karsten Nohl

Infrastructure
Hacker

Chief Scientist at
SRLabs

Das Logo Horizontal

— Pos / Neg

3

We run a small EDR test lab

4

EDR:
MS Defender
for Endpoint

EDR:
Symantec

EDR

EDR:
Sentinel

One

Antivirus
(as reference)

VMWare Hypervisor

Win 10 VM Win 10 VM Win 10 VM Win 10 VM

Inject malware samples and see if they get detected

EDR Test Lab

§ SRLabs regularly conducts red
team exercises

§ The prepare and test EDR evasion
for these exercises, we run our
own mini EDR test lab

§ Each EDR is running in an isolated
virtual machine

§ All EDR features are enabled with
one exception: Cloud uploads

§ The results shared in this
presentation were generated in
the test lab in August 2022

Background

Das Logo Horizontal

— Pos / Neg

3

Agenda

5

How EDRs work

Effective techniques to
circumvent them

How to compensate for
EDR protection gaps

Das Logo Horizontal

— Pos / Neg

3

EDRs conduct three types of analyses to detect endpoint detection and abuse

6

§ Extract information from
binary

§ Execute binary in a sandbox
environment and observe it

§ Observe the binary as its executing on the computer
§ Hook into important functions/syscalls to learn in

realtime about behavior

§ Analyzes not only the binary, but everything that
surrounds the execution

A. Static analysis B. Dynamic analysis C. Behavioral analysis

Antivirus tools are based on static and dynamic analysis EDRs add behavioral analysis – our focus today+

Looks
for

Common patterns:
- Known malicious strings
- Threat actor IP or domains

- Malware binary hashes

Malicious behavior in sandbox:
- Network connections
- Registry changes

- Memory Access
- File creation/deletion

Malicious behavior when running without sandbox:
- User actions
- system calls

- commands executed in the command line
- Which process is executing the code

Das Logo Horizontal

— Pos / Neg

3

A. Static Analysis – your good ol’ antivirus engine

7

User downloads file

Extract static values Do nothing if legit
String

Domain

Assembly snippet

IP Address

File Hash

…

clickme.exe

Compare against
database of known
malicious values[1]

Database with
Indicators of
Compromise

(IOCs)

Delete file if
malicious

[1] Checking for exact values can also be augmented by heuristics that are applied on the collected data

Malware

EDR or
Antivirus

Obfuscation
§ Change function and variable names
§ Applying encoding mechanisms such as

Caesar ciphers

Encryption

§ Apply encryption to potentially-flagged
code parts (“packer”/ ”loader”)

§ Then obfuscate the decryption routine
to avoid additional signatures

Static analysis evasion allows malware to stay undetected
by avoiding static signatures, using two techniques

Static analysis detects malware through known indicators of compromise

Das Logo Horizontal

— Pos / Neg

3

B. Dynamic Analysis – controlled detonation in a sandbox

8

User downloads file

Execute file in
virtual machine
(“sandbox”) and
observe behavior

clickme.exe
Malware

EDR or
Antivirus

Dynamic analysis observes malware in sandbox

Network Connections

Registry Changes

Memory access

File Creation

Do nothing if legitCompare against
database of known
malicious values[1]

Database with
Indicators of
Compromise

(IOCs)

Delete file if
malicious

[1] Checking for exact values can also be augmented by heuristics that are applied on the collected data

Dynamic analysis evasion tries to detect the sandbox and
stop the malware before being detected

Check
number of
processors

Sandbox environments usually run with a
limited number of processors

Check
memory
size

Sandbox environments usually do not have
much RAM memory available

Check
filename

Check if the malware name changed when
bring copied into the sandbox

Call non-
virtualized
APIs

Some WinAPIs are not emulated by most
sandboxes. For example, the return value
of VirtualAllocExNuma() will be NULL

Check user/
domain

For targeted attacks, the malware can
check whether the targeted user account
or domain name exists in the sandbox

Sleep Delaying the execution of the malicious
routine can help to exhaust the EDR engine

The more sandbox checks are used in parallel,
the more suspicious the malware might appear

Das Logo Horizontal

— Pos / Neg

3

Correlate info

kernel32.dll

ntdll.dll

C. Behavioral Analysis – playing with fire

9

Malware

EDR

VirtualAlloc

NtAllocateVirtualMemory

WriteProcessMemory

NtWriteVirtualMemory

CreateThread

NtCreateThread

Windows
processes
load dll’s to
access OS
features

[1] Different EDRs might apply different hooking methods and also choose other DLLs or functions to hook

EDR solutions typically
overwrite the loaded dll’s in
each processes’ memory,
thereby diverting execution
of key functions[1]

Kernel NtAllocateVirtualMemory NtWriteVirtualMemory NtCreateThread

Malware starts, checks for
sandbox, exits if found Malware allocates memory Decrypts payload and writes

to memory
Launches payload as a new
thread

U
se

r s
pa

ce

Check and inspect if required

Behavioral analysis closely monitors malware while it is executing on the actual computer

Das Logo Horizontal

— Pos / Neg

3

Agenda

10

How EDRs work

Effective techniques to
circumvent them

How to compensate for
EDR protection gaps

Das Logo Horizontal

— Pos / Neg

3

Evasion techniques can render EDRs ineffective – We discuss three options

11

i Details on next slides

No evasion attempt
(just WinAPI calls)

Evasion through
Unhooking

Evasion through
Direct System Calls

Evasion through
Indirect System Calls

Malware uses code fragments in kernel
dll’s without calling the hooked functions
in those dll’s

Malware circumvents hook in system dll’s
by directly sys-calling into kernel

Malware overwrites EDR hooks before
executing payload

Malware does not try to evade behavioral
analysis and directly calls Windows APIs

1. Apply base evasion to all samples 2. Experiment with different Behavioral Analysis Evasion techniques

We are finding out EDR effectiveness by testing different versions of our encrypted malware loader

Evade Static
Analysis

Payload AES
Encryption

Evade Dynamic
Analysis / Sandbox

§ Sleep Timer
§ VirtualAllocExNuma()
§ Check If >2GB RAM

1

2

3

Das Logo Horizontal

— Pos / Neg

3

Evasion technique 1 – Unhook EDR by overwriting ntdll.dll with a clean version

12

Malware

EDR

Kernel

ntdll.dll
with
hooks

NtAllocateVirtualMemory

kernel32 VirtualAlloc

NtAllocateVirtualMemory

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

Normal

EDR
catches
syscall

1

Das Logo Horizontal

— Pos / Neg

3

Evasion technique 1. – Unhook EDR by overwriting ntdll.dll with a clean version

13

ntdll.dll
with
hooks

NtAllocateVirtualMemory

kernel32 VirtualAlloc

NtAllocateVirtualMemory

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

ntdll.dll NtAllocateVirtualMemory

kernel32 VirtualAlloc

NtAllocateVirtualMemory

§ Obtain original ntdll.dll without EDR
hooks (e.g. read from disk)

§ Overwrite ntdll.dll in own process
memory with original one

Different methods exists to
obtain a “clean” ntdll.dll

Read ntdll.dll from disk1

Start process in suspended
state and copy it from there2

Get creative!?

Normal “Unhooking” the EDR

ntdll.dll
without
hooks

NtAllocateVirtualMemory

1

Malware

EDR

Kernel

EDR
sees nothing

EDR
catches
syscall

Das Logo Horizontal

— Pos / Neg

3

EDR
catches
syscall

Different methods exists to
obtain a “clean” ntdll.dll

Read ntdll.dll from disk1

Start process in suspended
state and copy it from there2

Get creative!?

Evasion technique 1. – Unhook EDR by overwriting ntdll.dll with a clean version

14

ntdll.dll NtAllocateVirtualMemory

kernel32 VirtualAlloc

NtAllocateVirtualMemory

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

ntdll.dll NtAllocateVirtualMemory

kernel32 VirtualAlloc

NtAllocateVirtualMemory

§ Obtain original ntdll.dll without EDR
hooks (e.g. read from disc)

§ Overwrite ntdll.dll in own process
memory with original one

Normal “Unhooking” the EDR

ntdll.dll
without
hooks

NtAllocateVirtualMemory

1

Malware

EDR

Kernel

EDR
sees nothing

Might not work:
§ Accessing ntdll.dll from disk is often flagged by EDRs,

as it is a common way of unhooking a process.
§ The API calls to overwrite ntdll.dll are probably

hooked as they reside within the hooked ntdll.dll

Das Logo Horizontal

— Pos / Neg

3

Evasion technique 2 – Avoid EDR hooks by directly calling kernel system calls

15

SSN (System Service Number)
§ It identifies which syscall

executes
§ The syscall number varies

between Windows
versions

§ It can be obtained
dynamically –
conveniently automated
by SysWhispers2

§ Can trigger static analysis
since the syscall assembly
instruction might be
flagged

Direct syscalls

§ Implement own syscall in assembly
§ Call syscall directly

and bypass NTDLL hooks

NtAllocateVirtualMemory

Import
assembly NtAllocateVirtualMemory

ntdll.dll NtAllocateVirtualMemory

Normal

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

ntdll.dll

kernel32

NtAllocateVirtualMemory

VirtualAlloc

NtAllocateVirtualMemory

Normal Direct Syscalls

EDR
catches
syscall

EDR
sees nothing

2

Malware

EDR

Kernel

Das Logo Horizontal

— Pos / Neg

3

Evasion technique 2 – Avoid EDR hooks by directly calling kernel system calls

16

SSN (System Service Number)
§ It identifies which syscall

executes
§ The syscall number varies

between Windows
versions

§ It can be obtained
dynamically

§ Can trigger static analysis
since the syscall assembly
instruction might be
flagged

Direct syscalls

§ Implement own syscall in assembly
§ Call syscall directly

and bypass NTDLL hooks

NtAllocateVirtualMemory

Import
assembly NtAllocateVirtualMemory

ntdll.dll NtAllocateVirtualMemory

Normal

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

ntdll.dll

kernel32

NtAllocateVirtualMemory

VirtualAlloc

NtAllocateVirtualMemory

Normal Direct Syscalls

EDR
catches
syscall

EDR
sees nothing

2

Malware

EDR

Kernel

Might not work:
§ Having syscall assembly instructions compiled into an executable

is unusual and can be flagged as suspicious / malicious
§ Heads up: Only the loader evades the EDR. You need to be

careful since the C2 malware might still use the hooked functions

Das Logo Horizontal

— Pos / Neg

3

EDR

NtAllocateVirtualMemoryNtAllocateVirtualMemory

EDR
catches
syscall

EDR
sees nothing

Kernel

Malware

Evasion technique 3 – Further increase stealth through indirect system calling

17

Indirect syscalls

§ Prepare syscall in assembly
(as with direct syscalls)

§ Then find a syscall instruction in
ntdll.dll and jumps to that location

Import
assembly NtAllocateVirtualMemory

ntdll.dll syscall

NtAllocateVirtualMemory

Direct syscalls

§ Implement own syscall in assembly
§ Call syscall directly

and bypass NTDLL hooks

Import
assembly NtAllocateVirtualMemory

ntdll.dll NtAllocateVirtualMemory

Normal

§ EDR hooks into NTDLL to analyze
and correlate the data

§ Common API calls go through NTDLL

ntdll.dll

kernel32

NtAllocateVirtualMemory

VirtualAlloc

Direct SyscallsNormal Indirect Syscalls

3

EDR
sees nothing

Das Logo Horizontal

— Pos / Neg

3

§ The Windows
implementation of “shared
libraries”

§ Need a host process loading
them and shares memory
space with the host process

§ Harder to follow suspicious
downloads

§ Is designed to run
independently

§ Has its own memory space
§ Allows EDR to tightly

observe execution of
suspicious files, for example
Internet downloads

One more thing: You can boost any of the evasion techniques by hiding inside a .dll

18

.dll.exe

Das Logo Horizontal

— Pos / Neg

3

The 3 simple injection techniques work surprisingly well against common EDR systems

19

EDR1 EDR2 EDR3 AV

Cobalt Sliver Cobalt Sliver Cobalt Sliver Cobalt Sliver

No behavioral analysis or
sandbox evasion

.exe

.dll

Only sandbox evasion
.exe

.dll

1 Unhooking
.exe

.dll

2 Direct syscalls
.exe

.dll

3 Indirect syscalls
.exe

.dll

Cobalt Strike and
Sliver are popular C&C
tools to control
infected computers

Base case. A malware
that does not try to
evade behavioral
analysis

EDR evasion
techniques.
Three approaches to
circumvent EDR
behavioral analysis (as
explained on previous
slides)

1

2

3

Detected
Undetected

Step 1: System Infection. We tested three different evasion techniques (and two base cases) against three leading EDR
solutions, and one antivirus solution. All experiments were run in August 2022.

Take aways.
§ EDRs are more likely to trigger based on well-known abuse tools like Cobalt Strike, suggesting some level of fingerprinting
§ Malware hiding in .dll’s is less likely to get detected by EDRs
§ EDRs differ in their effectiveness, however some evasion techniques successfully circumvent most (all?) of them
§ Our experiments so far only use well-known techniques. Better evasion is possible should it become necessary

Das Logo Horizontal

— Pos / Neg

3

The 3 simple injection techniques work surprisingly well against common EDR systems

20

EDR1 EDR2 EDR3 AV

Cobalt Sliver Cobalt Sliver Cobalt Sliver Cobalt Sliver

No behavioral analysis or
sandbox evasion

.exe

.dll

Only sandbox evasion
.exe

.dll

1 Unhooking
.exe

.dll

2 Direct syscalls
.exe

.dll

3 Indirect syscalls
.exe

.dll

Cobalt Strike and
Sliver are popular C&C
tools to control
infected computers

Base case. A malware
that does not try to
evade behavioral
analysis

EDR evasion
techniques.
Three approaches to
circumvent EDR
behavioral analysis (as
explained on previous
slides)

1

2

3

Detected
Undetected

Step 1: System Infection. We tested three different evasion techniques (and two base cases) against three leading EDR
solutions, and one antivirus solution. All experiments were run in August 2022.

Take aways.
§ EDRs are more likely to trigger based on well-known abuse tools like Cobalt Strike, suggesting some level of fingerprinting
§ Malware hiding in .dll’s is less likely to get detected by EDRs
§ EDRs differ in their effectiveness, however some evasion techniques successfully circumvent most (all?) of them
§ Our experiments so far only use well-known techniques. Better evasion is possible should it become necessary

Hiding inside a
.dll really helps

Das Logo Horizontal

— Pos / Neg

3

The 3 simple injection techniques work surprisingly well against common EDR systems

21

EDR1 EDR2 EDR3 AV

Cobalt Sliver Cobalt Sliver Cobalt Sliver Cobalt Sliver

No behavioral analysis or
sandbox evasion

.exe

.dll

Only sandbox evasion
.exe

.dll

1 Unhooking
.exe

.dll

2 Direct syscalls
.exe

.dll

3 Indirect syscalls
.exe

.dll

Cobalt Strike and
Sliver are popular C&C
tools to control
infected computers

Base case. A malware
that does not try to
evade behavioral
analysis

EDR evasion
techniques.
Three approaches to
circumvent EDR
behavioral analysis (as
explained on previous
slides)

1

2

3

Detected
Undetected

Step 1: System Infection. We tested three different evasion techniques (and two base cases) against three leading EDR
solutions, and one antivirus solution. All experiments were run in August 2022.

Take aways.
§ EDRs are more likely to trigger based on well-known abuse tools like Cobalt Strike, suggesting some level of fingerprinting
§ Malware hiding in .dll’s is less likely to get detected by EDRs
§ EDRs differ in their effectiveness, however some evasion techniques successfully circumvent most (all?) of them
§ Our experiments so far only use well-known techniques. Better evasion is possible should it become necessary

Detection seems partly based
on known Cobalt Strike

behavior signatures

Das Logo Horizontal

— Pos / Neg

3

The 3 simple injection techniques work surprisingly well against common EDR systems

22

EDR1 EDR2 EDR3 AV

Cobalt Sliver Cobalt Sliver Cobalt Sliver Cobalt Sliver

No behavioral analysis or
sandbox evasion

.exe

.dll

Only sandbox evasion
.exe

.dll

1 Unhooking
.exe

.dll

2 Direct syscalls
.exe

.dll

3 Indirect syscalls
.exe

.dll

Cobalt Strike and
Sliver are popular C&C
tools to control
infected computers

Base case. A malware
that does not try to
evade behavioral
analysis

EDR evasion
techniques.
Three approaches to
circumvent EDR
behavioral analysis (as
explained on previous
slides)

1

2

3

Detected
Undetected

Step 1: System Infection. We tested three different evasion techniques (and two base cases) against three leading EDR
solutions, and one antivirus solution. All experiments were run in August 2022.

Take aways.
§ EDRs are more likely to trigger based on well-known abuse tools like Cobalt Strike, suggesting some level of fingerprinting
§ Malware hiding in .dll’s is less likely to get detected by EDRs
§ EDRs differ in their effectiveness, however some evasion techniques successfully circumvent most (all?) of them
§ Our experiments so far only use well-known techniques. Better evasion is possible should it become necessary

Two evasion techniques
work universally against

all tested EDRs

Das Logo Horizontal

— Pos / Neg

3

After successful injection, the EDR might still detect the hacker based on suspicious actions

23

Chain of events from malware download to execution and system abuse

User interacts with
infected file, e.g. .lnk,
Office Macro

Malware is executed
– either in the delivery
script or deferred with
.dll hijacking

Hacker interacts with
the malware remotely
(“command and
control”)

Finally, hacker
performs malicious
actions, like stealing
or encrypting files

Hacker collects more
information from
system and Active
Directory

What we covered so far

§ Potential malware get downloaded/executed
§ EDR analyses
§ We use evasion techniques not to get detect

Let’s look at the next steps in the hacking chain …

§ Once the malware is running, we can trigger different malicious actions
§ These, too, can get detected by the EDR
§ But mostly they are not – see next slide

Das Logo Horizontal

— Pos / Neg

3

EDR systems only trigger on few suspicious actions

24

EDR1 EDR2 EDR3 AV

Abuse vector Cobalt Sliver Cobalt Sliver Cobalt Sliver Cobalt Sliver

Use malware
built-in
capabilities

C&C channel

Open SOCKS tunnel,
e.g. for Network scanning

Data exfiltration

KeyLogger

Dynamically
add new
capabilities

Run C# binary (through execute-
assembly)

Run code (in process: beacon
object file)
e.g. Sharphound, NanoDump:
dumping LSASS

Run C# code (in process: through
inline-execute-assembly) e.g.
certify

Core functionality of
Cobalt+ Sliver.
Should be easier to detect
based on behavior
signatures

Community extensions.
Harder to detect.
Some extensions come in
form of BOFs.
For other tools that have
not yet been prepared as
BOF, you can instead use
the generic ‘inline-execute-
assembly’ as a wrapper and
execute pretty much any
tool

Step 2: System Abuse. After successfully starting the malware (in step 1), we are now executing malicious actions of the target.
All tests in this overview are based on the indirect syscall .dll injection technique (from step 1).

Detected
Undetected

Take aways.
§ EDRs are highly ineffective at detecting abuse actions after injection
§ When adding new capabilities, red teamers should avoid the built-in ‘execute-assembly’ option that might trigger an EDR

Das Logo Horizontal

— Pos / Neg

3

Putting the pieces together: By combining the right injection and abuse strategies, hackers can
fully circumvent common EDR solutions

25

The user downloads
a zip file that
contains some .lnk
files

.lnk executes
mshta.exe with the
malware location as
argument

mshta.exe downloads
and executes a .hta
malicious file from our
server.

Due to .dll hijacking,
our payload is
executed every time
Teams is opened

EDR system does
not detect infection
when using the
evasion techniques
discussed in this
presentation

Applocker bypass

mshta.exe is a system
default binary that can
be misused; this
successfully bypasses
Applocker

Browser bypass

Modern browsers refuse
to download .lnk files.
This protection is
bypassed by putting the
.lnk inside a .zip

Detailed chain of events from malware download to execution

Das Logo Horizontal

— Pos / Neg

3

26

Demo Time

Das Logo Horizontal

— Pos / Neg

3

Agenda

27

How EDRs work

Effective techniques to
circumvent them

How to compensate for
EDR protection gaps

Das Logo Horizontal

— Pos / Neg

3

Do we even need EDRs on endpoints?

28

Sliver
sample
upload to
VirusTotal

Cobalt Strike
sample
upload to
VirusTotal

Final experiment: Endpoint-based vs cloud-based detection.
§ We uploaded the samples that every EDR in our test lab missed to VirusTotal (indirect system calls, .dll)
§ 13/16 engines in VirusTotal successfully detected the malware, without any behavioral analysis on the target endpoint
§ This suggests that it is possible to find well-obfuscated malware by building better sandboxes that are harder to detect

Das Logo Horizontal

— Pos / Neg

3

Some complimentary controls are available to make up for the protection gaps in EDRs

29

Other controls are needed to
further increase hacking resilience

Additional security measures
further increase the resilience to
malware injections:
§ App allow-listing
§ Heavy monitoring on common

external compromise vectors
(.lnk, ISO, Word…)

§ Tier-0 / zero-trust architecture
§ Threat hunting, that is: Deeper

analysis on EDR telemetry
§ Prevent LSASS dumping by

running it as protected process
light (RunAsPPL)

EDR make corporations “12%” harder to compromise

Back-of-the-envelope estimate:
§ 8 weeks hacking baseline. A red team exercise to take

over a large corporate takes an average of 4 experts and
8 weeks, including preparation (this varies widely by
company, of course)

§ Knowing that an EDR is used makes red teaming much
slower since testers become very careful not to trigger
anomaly detection, and avoid servers that run EDRs

§ 1 more week to evade EDR. When the company uses
an EDR on user endpoints and Windows servers, the
red team requires about one more week of preparation
and execution – “12% more”

§ For smaller or easier-to-hack companies, the relative
security uplift from using an EDR is larger

Das Logo Horizontal

— Pos / Neg

3

Security software can introduce software bugs, further decreasing their protection contribution

30

We found issues in a modern
EDR system:
§ Through default credentials

we gained full access to the
popular EDR backend, its
privileges, and functions (on-
premise only)

§ Additionally, we discovered
three high-severity
vulnerabilities in the EDR,
arising from weak access
control on API endpoints:
CVE-2022-27968 and -27969

§ All issues have been fixed in
the latest versions

EDR systems can have bugs, too

EDR management interface, accessible over network with default credentials

Das Logo Horizontal

— Pos / Neg

3

Security software can introduce software bugs, further decreasing their protection contribution

31

Details of CVE-2022-27968 and -27969

Das Logo Horizontal

— Pos / Neg

3

Take aways

32

Questions?
Jorge Gimenez <jorge@srlabs.de>

Karsten Nohl <nohl@srlabs.de>

1 EDR systems can be circumvented with well-
documented techniques

2 The EDR slows down hackers, instead of
preventing endpoint hacking

3
Complementary controls are needed to reach
high hacking resilience, in particular system
hardening and threat hunting,

