
Sam Page, HITB2022SIN

E’rybody Gettin’ TIPC
Demystifying Remote Linux Kernel Exploitation



$ whoami
• sam (@sam4k1)


• i do vr and xdev


• linux, security and gaming enthusiast dw tho, i don’t actually use light mode



$ ls talk/
1. shock 


2. denial


3. anger 


4. bargaining


5. depression


6. testing


7. acceptance



shock
aka discovery



shock
aka discovery

• at the time was looking for a cve, play it safe right?


• look for low-hanging fruit: simple primitive, familiar module, existing poc?


• queue cve-2021-43267, a remote linux kernel heap overflow (@maxpl0it)


• spoiler alert: none of the above, but … RCE???


• enter panic gameplan



shock
the gameplan

• these are inherently complex, open-ended problems


• no clear route to “winning”, sometime’s no route at all


• let’s break what can seem a daunting task into simpler steps:


1. develop understanding of exploitation primitive and attack surface


2. use this to put together plan of attack(s)


3. begin enumerating surface for primitives


4. win ???



shock
developing understanding

• unauthd, remote heap overflow of attacker controlled data


• affected kernel vers? trigger? constraints? target caches?


• remote attack surface is still a lot of code…


• let’s start with the net/tipc module


• intra-cluster comms managed via nodes and their links, used by telcos


• interested in remote surface; TIPC messages types and handling?


• queue far too much time trawling through docs, pcaps and src



shock
interrupt vs process context



shock
plan of attack

• we understand what we have: arb heap overflow


• we understand where we are: 5.10 - 5.15 kernel in net/tipc


• coming up with a plan of attack:


1. remote heap feng shui primitives


2. leveraging mem corruption to gain CFHP


3. using CFHP to pivot from interrupt context to process context


4. pivot into full RCE via final payload (e.g. reverse shell or smth right?)



shock
oh and mitigations

@a13xp0p0v’s linux defence map



shock
enumerating primitives

• primitives? building blocks that help us progress our attack plan


• many techniques and approaches, here’s mine:


• developing deep understanding is fundamental


• documentation and a methodical, targeted approach


• static analysis to locate candidates


• deeper analysis via kernel debugging

snippet from my many, many markdown notes



shock
the shock

pls don’t @ me regex wizards

CVE-2022-0435
the monitor msg



denial
aka verification & disclosure



denial
aka verification & disclosure

• double quadruple checking this is legit


• time to move onto the disclosure process… cries in whitespace


• embargoed disclosure, patch submission, public disclosure 

my disclosure debut off to a flying start



anger
aka trying to achieve RCE on a modern kernel



anger
aka trying to achieve RCE on a modern kernel

• let’s recall our gameplan:


1. develop understanding of exploitation primitive and attack surface


2. use this to put together plan of attack(s)


3. begin enumerating surface for primitives


4. win ???



anger
developing understanding

• our understanding on net/tipc still relevant


• however, exploit primitive has changed


• diff requirements to reach RCE now


• looking at a remote stack overflow now


• ~1400 byte payload, 272 byte stack buffer


• execution flow is in the interrupt context


• kernels 4.8 through 5.16



anger
plan of attack

• an updated plan of attack:


1. leverage stack overflow CFHP to more flexible arb code execution


2. use code exec to pivot from interrupt ctx to process ctx 


3. pivot into full RCE via final payload (e.g. reverse shell or smth right?)



anger
oh and mitigations

@a13xp0p0v’s linux defence map



bargaining
aka okay what if we just got rid of KASLR and canaries?



bargaining
aka okay what if we just got rid of KASLR and canaries?

• given a nice leak, what does our plan of attack really look like?


• a high level overview:


1. pivot RIP control to shellcode exec


2. hooking syscalls to pivot to process context 


3. using our hook to deliver a user mode payload


4. win ??? 



bargaining
getting our bearings

• the situation so far:

our struct tipc_mon_domain payload

kernel stack context for our buffer overflow, in 
tipc_mon_rcv() disassembly snippet showing tipc_mon_rcv() epilogue



bargaining
getting shell code execution

• rop + set_memory_x()

• jmp to shellcode


• cleanup!!! 



bargaining
1337 shellcode to escape process ctx

• now have arb kernel code exec!


• but we’re in the interrupt ctx :(


• solution? syscall hooking

the what
the how



bargaining
the hook

• now in process context, need to make final pivot to usermode


• no need to reinvent wheel, plenty of tools provided by kernel :) 

pseucode for a full functioning hook



bargaining
win ????

• now have arb code exec in priv process, gg


• still need to cleanup though! don’t know where we are



depression
aka let’s actually get round to looking at some mitigations



depression
aka let’s actually get round to looking at some mitigations

• kernel version, arch, config, bug type & techniques are all factors


• cat and mouse game between mitigations and bypass techniques


• want to be aware and factor in relevant mitigations throughout process


• soft vs hard mitigations


• apply understanding to our specific context, e.g. LPE vs RCE?



depression
contemporary mitigations

• And plenty more out there! (CFI, heap hardening, FG-KASLR etc. etc.)

SMEP/SMAPFORTIFY_SRC

KASLR & STACKPROTECTOR



testing
aka how i do mine, workflow and why emacs is the best ide



testing
aka how i do mine, workflow and why emacs is the best ide

• emacs, yeah i’m being fr


• QEMU + gdb (+ gef)


• structured .md notes, try 
document much as pos


• generalise solutions when 
possible, for next time!


• don’t be afraid to share 
hacky scripts/setups doom emacs (probably should have put some kernel grokking here, but here’s magit)



acceptance
aka this talk



acceptance
aka this talk

• kernel exploitation is cool


• not so scary once you break it down, draws from lots of skill


• success/winning isn’t binary


• sharing is caring and will make your life + other’s easier


• remote kernel exploitation is both familiar yet wildly different



resources
and misc links

• https://twitter.com/sam4k1


• https://sam4k.com


• https://github.com/sam4k/linux-kernel-resources


• https://github.com/a13xp0p0v/linux-kernel-defence-map


• https://github.com/doomemacs/doomemacs


• https://hugsy.github.io/gef/


• https://elixir.bootlin.com/linux/latest/source

https://twitter.com/sam4k1
https://sam4k.com
https://github.com/sam4k/linux-kernel-resources
https://github.com/a13xp0p0v/linux-kernel-defence-map
https://github.com/doomemacs/doomemacs
https://hugsy.github.io/gef/
https://elixir.bootlin.com/linux/latest/source


exit(0);


